System Size and Beam Energy Dependence of Hadronic Production and Freeze-out

> Orpheus I Mall University of California, Davis for the STAR Collaboration

Strangeness in Quark Matter Polish Academy of Arts and Sciences 18th – 24th Sep Kraków, Polska

QGP Phase: Lattice

 Quark Matter Phase Diagram
 Lattice QCD calculations: m_{u,d} ≠ 0, m_s ≈ physical Expect an analytic crossover at low μ_B

• Locations of critical point and first order phase transition vary greatly by model as calculations advance to finite μ_B

Source	$(T, \mu_B), MeV$	Comments	Label
MIT Bag/QGP	none	only 1st order	—
Asakawa, Yazaki '89	(40, 1050)	NJL, CASE I	NJL/I
"	(55, 1440)	NJL, CASE II	NJL/II
Barducci, et al '89-94	(75, 273) _{TCP}	composite operator	CO
Berges, Rajagopal '98	(101, 633) _{TCP}	instanton NJL	NJL/inst
Halasz, et al '98	(120, 700) _{TCP}	random matrix	RM
Scavenius, et al '01	(93,645)	linear σ -model	LSM
"	(46,996)	NJL	NJL
Fodor, Katz '01	(160, 725)	lattice reweighting I	
Hatta, Ikeda, '02	(95, 837)	effective potential (CJT)	CJT
Antoniou, Kapoyannis '02	(171, 385)	hadronic bootstrap	HB
Ejiri, <i>et al</i> '03	(?,420)	lattice Taylor expansion	
Fodor, Katz '04	(162, 360)	lattice reweighting II	

M Stephanov: arXiv:hep-ph/0402115

Fodor, Katz JHEP04 (2004) (050)

QGP Phase: Experiment

Experimental Search

- Onset of Deconfinement
- First Order Phase Transition •
- Critical Point 0

Considerations

- Matter Evolution Phase Change ۷
- **Energy Dependence** ۲
- System Size Dependence 0

Asakawa et. al. PRL101:122302,2008 220 phase boundary 200 (**VeV**) 120 180 (MeV) QCD Critical Point 160 Chemical 140 Freezeout 120 $s/n_{\rm B} = 29.4$ (QCP) 100 $s/n_{\rm B}=25.6$ (CO) $s/n_{\rm B}=22.2$ (FO) 80 400 600 800 1000 0 200 μ_{B} (MeV)

9/23/11

Randrup, Cleymans PRC74:047901,2006 200

S=0 & Q/B=0.4

RHIC

NICA

0.04

Temperature

100

50

0.00

Becattini et. al. Phys.Rev.C73:044905,2006

Orpheus Mall - STAR Collaboration

0.08

Net baryon density ρ (fm⁻³)

Hadronic freeze-out

Phys. Rev. C74 (2006) 047901]

0.12

0.16

J. Randrup & J. Cleymans

Initial System Size Comparison

System size, impact parameter, and collision centrality are studied via Glauber model fit to the raw multiplicity

Cu

Cu

STAR Detector and Particle ID

Event and Centrality Cuts

- Vertex found
- |V_z|< 30cm, |V_r|< 1cm @ RMS
- Min-bias Trigger
- Centrality cuts from MC
 Glauber model simulation
- Track Cuts (Primary)
 - Global DCA < 3.0 cm
 - Number of Fit Points > 24
 - $|y_{\text{particle}}| < 0.1$
 - (particle = $\pi \pm$, K \pm , p, p)
- Particle Identification
 - Energy loss in STAR TPC
 - Bichsel expectation Calibrated for detector effects
 - Multi-Gaussian fits and fix parameters μ_{dE/dx} and σ_{dE/dx} in regions of overlap

Efficiency and Corrections

- Detector acceptance and particle reconstruction efficiency
- Energy loss corrections using MC embedding
- Proton background correction using DCA distributions
- π spectra have not been corrected for weak decays, muon contamination, or background pions. This is estimated to be a 15% effect at the lowest m_T-m_O bin and decreases sharply.

Blast-wave Model:

Boltzmann

- Invoke boost invariance to assume cylindrical symmetry
- Applies blast profile with radial dependence
- Systematic errors predominantly due to cut at low $m_T - m_0$ to exclude region of weak decay and muon contamination and variation in n parameter, in this plot n=1 $m_T - m_\pi > 0.275$ GeV, $p_T > 0.4$ GeV
- Assumes Boltzmann statistics: Problematic at low m_T - m_0 for π

 $\begin{aligned} \beta_T(r) &= \beta_S \left(\frac{r}{R}\right)^n \\ \beta_T: \text{ Individual shell velocity} \\ \beta_S: \text{ Surface shell velocity} \\ r &: \text{ Radius of individual shell} \\ R: \text{ Radius of surface shell} \\ n &: \text{ Blast profile parameter} \end{aligned}$

Schnedermann, Sollfrank, Heinz Phys. Rev. C. 48:2462-2475 1993

$$\langle \beta_T \rangle = \beta_S \frac{1}{(1+n/2)}$$

 $\beta_T(r)$

Baryon Transport

- Imbalance of p/π^+ vs. \overline{p}/π^- ratio increases with lower collision energies
- Increasing p/π⁺ ratios with increasing centrality
- No effect on \overline{p}/π^- ratio in centrality.
- Net-baryon density increases with centrality. Effect most prominent at lower energies
- Q: How is net baryon number transported over 3 to 5 (10-100 GeV beam) units of rapidity?

p+p 200, Au+Au 200, 62.4 GeV: [STAR: PhysRevC.79.034909] Cu+Cu 62.4, 200 GeV: [STAR: PhysRevC.83.034910]

Strangeness Enhancement

STAR: Central Mid-rapidity Yields Cu+Cu 22.4 GeV 0-5%, Au+Au 19.6 GeV 0-10%

- One of the initially predicted signatures of QGP
- Solution Mathematical Section Mathematical Section 1997 S
 - Pair production
 - Associated production with hyperons (sensitive to baryon density)
- Showing a shift from associated to pair production at higher energies?
- What is the behavior of the Cu+Cu system?

ਸ਼ੂ **0.3 Κ**'/π' **Κ⁺/**π⁺ RHIC Au+Au 19.6 GeV 0.25 RHIC Cu+Cu 22.4 GeV RHIC Au+Au RHIC Cu+Cu 0.2 0.15 0.1 IMINARY 0.05 RHIC p+p E802, E866/E917, E895, NA49 0 10² 10^{3} 10 √S_{NN}

p+p 200, Au+Au 200, 130, 62.4 GeV [STAR: PhysRevC.79.034909] Cu+Cu 62.4, 200 GeV [STAR: PhysRevC.83.034910] Au+Au 9.2 GeV [STAR: PhysRevC.81.024911] 7.7, 11, 39 GeV: Kumar QM2011

9/23/11

E866/917 PLB476.1.2000 E895 PRC68.054905.2003 E802 PRC58.3523.1998 NA44 PRC66.044907.2002 NA49 PRC66.054902.2002

Chemical Freeze-out

- Statistical Model Fit: Appreciable change in μ_B due to species size for central collisions
- Fit to particle ratios to get T_{ch}, μ_q, μ_s (μ_B, μ_S) and γ_S. Model reproduces ratios with great precision

9/23/11

Collision Evolution

- Chemical freeze-out temperatures show no dependence on centrality or collision ion species.
- Kinetic freeze-out temperatures decrease with increasing centrality
- Cu+Cu systems might have higher kinetic freeze-out temperatures in comparison with Au+Au collisions at similar collision energies

If so, does this give us hints about initial system energy density? Does it tell us about $\tau_{kin} - \tau_{ch}$?

p+p 200, Au+Au 200, 130, 62.4 GeV [STAR: PhysRevC.79.034909] Cu+Cu 62.4, 200 GeV [STAR: PhysRevC.83.034910] Au+Au 9.2 GeV [STAR: PhysRevC.81.024911] 7.7, 11, 39 GeV: Kumar QM2011

E866/917 PLB476.1.2000 NA49 PRC66.054902.2002 FOPI Nuc.Phy.A612.493.1997 EOS Phy.Lett.75.2662.1995 Andronic et. al: Nu.Ph.A772.167.2006 Cleymans et. al. J.Phy.G25.281.1999 Cleymans et. al. PRC57.3319.1998 Braun-Munzinger et. al. PLB365.1.1996

Orpheus Mall - STAR Collaboration

9/23/11

Summary

- Spectral shapes differ at low m_T-m₀ for protons in Cu+Cu 22.4 GeV collisions compared to Au+Au 19.6 GeV collisions
- Blast-wave results hint at lower blast velocity β_T and higher temperature T_{kin} for Cu+Cu 22.4 GeV vs. Au+Au 19.6 GeV collisions.
- Less p/π⁺ vs. p/π⁻ asymmetry observed for central Cu+Cu 22.4 GeV vs. Au+Au 19.6 GeV collisions. Net baryon density increases for lower collision energies and increases with N_{part}
- For central Cu+Cu 22.4 GeV, K⁺/ π ⁺ ratio is slightly lower than Au+Au 19.6 GeV central collisions

Chemical freeze-out temperature seems independent of collision centrality and system size at RHIC energies. The baryon chemical potential appears lower in Cu+Cu 22.4 GeV collisions in comparison with Au+Au 19.6 GeV for central collisions.

Question: How to reach the critical point and the 1st order phase transition?

- If it is possible we have missed the critical point and first order phase transition, how else may we attempt to reach towards it (along with an energy scan)?
- I: Decrease system size to increase T_{ch}? The NA61 expectation was not a significant effect for our data
- 2: Does increasing system size increase μ_B? Challenge with non spherical ions: While head-on Uranium collisions would be ideal for this there is very low cross-section for such collisions.

-Collision Evolution Trajectory

Critical Point

1st Order Phase Transition

Chemical Freeze-out Points

2