



# Open charm measurements in p+p collisions at STAR

David Tlusty



NPI ASCR, CTU Prague for the STAR collaboration





#### 1. Motivation

- 2. STAR detector and analysis
- 3.  $D^0$  and  $D^*$  in 200 and 500 GeV collisions
- 4. Non-Photonic electrons in 200 GeV collisions
- 5. Summary

SOM 2013

## Why to study heavy quarks in p+p collisions



- Sensitive to initial gluon density and gluon distribution. Due to its large mass a good pQCD test at RHIC collision energies
- Provides important baseline for corresponding measurements in heavy-ion collisions



STAR

1. Motivation



#### How to Measure Charm Quarks



David Tlusty, STAR

1. Motivation



### How to Measure Charm Quarks

- ★ Indirect measurements through semileptonic decay
  - ★ can be triggered easily (high  $p_T$ )
  - ★ higher B.R.
  - ★ indirect access to the heavy quark kinematics
  - contribution from both charm and bottom hadron decays



1. Motivation

3.69% 2,69%



- ★ Indirect measurements through semileptonic decay
  - ★ can be triggered easily (high  $p_T$ )
  - ★ higher B.R.
  - ★ indirect access to the heavy quark kinematics
  - contribution from both charm and bottom hadron decays

### $\star$ Direct reconstruction

- direct access to heavy quark kinematics
- difficult to trigger (high energy trigger only for correlation measurements)
- ★ smaller Branching Ratio (B.R.)
- large combinatorial background (need handle on decay vertex)



1. Motivation



## **S**olenoidal **T**racker **A**t **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$



David Tlusty, STAR

SQM 2013, Birmingham UK



## **S**olenoidal **T**racker **A**t **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$



 VPD: minimum bias trigger

David Tlusty, STAR

SQM 2013, Birmingham UK



## **S**olenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$



David Tlusty, STAR

SQM 2013, Birmingham UK



## **S**olenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$



David Tlusty, STAR

SQM 2013, Birmingham UK



## **S**olenoidal **T**racker At **R**HIC : $-1 < \eta < 1, 0 < \phi < 2\pi$





### Event Selection and Particle Identification





David Tlusty, STAR

MA2013



### Event Selection and Particle Identification



David Tlusty, STAR

2. STAR detector and Analysis

MA2013

star Electron Identification Improvement by EM calorimeter

SOM 2013





### D<sup>0</sup> and D\* Signal in p+p 500 GeV



David Tlusty, STAR

4.  $D^0$  and  $D^*$  in p+p collisions

∯<mark>SQM</mark> ≩2013



### D<sup>0</sup> and D\* Signal in p+p 500 GeV



David Tlusty, STAR

SQM 2013, Birmingham UK

4.  $D^0$  and  $D^*$  in p+p collisions

50M



#### $D^0$ and $D^* p_{T}$ Spectra in p+p 500 GeV



David Tlusty, STAR



#### $D^0$ and $D^* p_{\tau}$ Spectra in p+p 500 GeV





David Tlusty, STAR



#### $D^0$ and $D^* p_{\tau}$ Spectra in p+p 500 GeV







#### $D^0$ and $D^* p_{T}$ Spectra in p+p 500 GeV





#### $D^0$ and $D^* p_{\tau}$ Spectra in p+p 500 GeV





David Tlusty, STAR



#### $D^0$ and $D^* p_{\tau}$ Spectra in p+p 500 GeV





David Tlusty, STAR



#### **Total Charm Cross Section**





David Tlusty, STAR

5. Summary







**Bottom contribution** 

Distributions of the azimuthal angle between NPE and hadrons normalized per NPE trigger



 $f_{e_B}(\Delta \phi), f_{e_D}(\Delta \phi)$ : Pythia 6.22 calculation of

azimuthal correlations between electrons from

 $r_B \equiv \frac{N_{e_B}}{N_{e_B} + N_{e_D}} = \frac{N_{e_B}}{N_{\rm npe}}$ 

$$-r_B f_{e_B}(\Delta \phi) + (1 - r_B) f_{e_D}(\Delta \phi)$$

near side ( $|\Delta \phi|$  < 1.5) fit,  $r_B$  as parameter



Independent measurement of  $r_B$ 

different mostly due to the decay kinematics

B, D meson decay and charged hadrons





## **STAR** Separate Measurement of B and D meson Spectra







- NGHAM 2013
- ★ D<sup>0</sup> and D\* are measured in p+p 200 GeV up to 6 GeV/c and in p+p 500 GeV up to 6 GeV/c
  - $\rightarrow d^2 \sigma^{c\overline{c}}/p_T dp_T dy$  consistent with
    - FONLL / its upper limit
    - k<sub>T</sub> factorization approach
- ★ Non Photonic Electrons consistent with FONLL / its upper limit
- ★ Bottom contribution consistent with FONLL prediction
  - systematically higher at 500 GeV than 200 GeV at 6.5 < p<sub>T</sub> < 9.5 GeV/c</p>
- ★ Further improvement with Heavy Flavor Tracker
  - see talk of Dr. Hao Qiu, Friday 11:30, Plenary 11

## Thank you

## **Backup Slides**





STAR Heavy Flavor Tracker Project.

- Reconstruct secondary vertex.
- Dramatically improve the precision of measurements.
- Address physics related to heavy flavor.
- $v_2$  : thermalization
- R<sub>CP</sub>: charm quark energy loss mechanism.





- 1) Raw Counts Difference between methods
- nFitPoints difference between MC(nFitPts>25)/MC(nFitPts>15) and Data(nFitPts>25)/Data(nFitPts>15)
- DCA difference between MC(dca<1)/MC(dca<2) and Data(dca<1)/Data(dca<2)</li>







#### **Pile-up removal**







- pp collisions peak luminosity  $L_{peak} = 5*10^{31} \text{ cm}^{-2}\text{s}^{-1}$  in year 2009.
- EventRate =  $L_{peak}^* \sigma^{NSD}(30 \text{ mb}) = 1.5 \text{ MHz}$
- TPC readout ~ 80 μs => TPC sees tracks from 120 collisions. Pile-ups are removed by
  - |VpdVz TpcVz| < 6cm cut
  - TPC PPV reconstruction algorithm