

ϕ -Meson Spin Alignment and the Azimuthal Angle Dependence of $\Lambda(\overline{\Lambda})$ Polarization in Au+Au collisions at RHIC

Biao Tu

(For the STAR collaboration) Central China Normal University & Brookhaven National Laboratory

SQM2017 10-15 July, Utrecht University

Introduction

- > Initial angular momentum $|L| \sim 10^3 \hbar$ in non-central heavy-ion collisions.
- > Baryon stopping may transfer this angular momentum, in part, to the fireball.
- > Due to vorticity and spin-orbit coupling, Λ and ϕ spins may align with *L*.

Motivation

Spin-orbit coupling Spins of Λ and $\overline{\Lambda}$ are aligned with the system angular momentum (*L*).

Magnetic field coupling Λ spin tends to be anti-aligned with B-field Ā spin tends to be aligned with B-field The difference between Λ and Λ can be used to study the B-field.

> Vorticity, maximum in the reaction plane, may not propagate efficiently from in to out of reaction plane due to the low viscosity of the system. This may lead to a larger in-plane than out-of-plane polarization for both Λ and $\overline{\Lambda}$.

Λ polarization observable

The global polarization of Λ hyperons can be determined from the angular distribution of Λ decay products relative to the system orbital momentum L

- A's are "self analyzing": Daughter proton preferentially decays into the direction of Λ spin.
- θ^* is the angle between the system orbital momentum *L* and the momentum of the daughter proton in the Λ rest frame.
- ϕ_p^* is the daughter proton azimuthal angle in the Λ rest frame.
- Ψ is the 1st order event plane reconstructed by ZDCSMD in this analysis.
- α_H is the Λ decay parameter ($\alpha_{\Lambda} = -\alpha_{\overline{\Lambda}} = 0.642 \pm 0.013$)

STAR Detector

- **EEMC** Magnet TOF BBC TPC MTD ZDCSMD
- ➢ Full azimuthal coverage and large acceptance
- Excellent particle identification
- > Λ and ϕ reconstruction identify daughters(π , k, p) with TPC and TOF
- Event planes reconstructed by ZDCSMD (1st order EP) and TPC (2nd order EP)

- S is the raw yield of the signal in the peak
- B is the raw yield of the background under the peak

A and $\overline{\Lambda}$ global polarization vs $\sqrt{s_{NN}}$

STAR Collaboration, arXiv:1701.06657

- STAR previous results at 62.4 and 200 GeV were consistent with zero.
- Significant P_H ($H = \Lambda$ or $\overline{\Lambda}$) observed for the first time at $\sqrt{s_{NN}} < 40$ GeV
- ► $P_{\rm H}(\Lambda) > 0$ and $P_{\rm H}(\overline{\Lambda}) > 0$ imply spin-orbit coupling and vorticity.
- Systematically P_H(Λ)
 < P_H(Λ) may hint for magnetic coupling.

Λ and $\overline{\Lambda}$ global polarization vs $\sqrt{s_{NN}}$

Zoom in to clearly show new results at 200 GeV

Note : Smearing of the observed EP (Ψ_{obs}) is not corrected yet in $\phi - \Psi_{obs}$

obs

0.5

- \triangleright No significant signal for off-peak Λ candidates (red points).
- \triangleright P_H shows a similar azimuthal dependence for Λ and Λ .

0.5

- > The significance of ΔP_H , for Λ and $\overline{\Lambda}$ combined, between $[0, \frac{\pi}{\circ}]$ and $[\frac{3\pi}{\circ}, \frac{\pi}{2}]$ is 4.7σ .
- Consistent with the picture of maximum vorticity in the equator.

0

obs

ϕ spin alignment observable

The 00-conponent of ϕ -meson spin density matrix (ρ_{00}) can be measured by angular distribution of decay daughter $\phi \rightarrow K^+ + K^-$ using:

$$\frac{dN}{d\cos\theta^*} = N_0 \times \left[(1 - \rho_{00}) + (3\rho_{00} - 1)\cos^2\theta^* \right]$$

- Where N_0 is the normalization factor and θ^* is the angle between angular momentum $(L)^*$ of the system and K⁺ momentum in the ϕ -meson rest frame
- A deviation of ρ_{00} from 1/3 would indicate a non-zero spin alignment

• The magnitude and the transverse-momentum (p_T) dependence of the ϕ spin alignment are expected to be sensitive to different hadronization scenarios: recombination ($\rho_{00} < 1/3$), fragmentation ($\rho_{00} > 1/3$).

J.Phys.G34, S323-330 (2007)

* In this analysis, L is set to be the normal of the 2^{nd} order EP reconstructed with TPC

ρ_{00} extraction

STAR Collaboration, QM2017 (Xu Sun poster)

Residual background subtracted

- Use 7 $\cos\theta^*$ bins
- Use Breit-Wigner fit and bin counting to extract raw yields
- Use angular distribution of K^+ to extract ρ_{00}
- ϕ -meson efficiency is calculated with K^+ and

 K^- embedding data and shows very weak $\cos(\theta^*)$ dependence.

- STAR previous result for ϕ -meson ρ_{00} at 200 GeV are consistent with 1/3 with large uncertainties.
- Since then STAR has accumulated more data with larger statistics, and at different energies.

STAR Collaboration, Phys. Rev. C 77, 061902(R) (2008)

STAR Collaboration, QM2017 (Xu Sun poster)

Non-significant p_T dependence with currently large systematical uncertainties dominated by the residual background estimation (under further investigation).

STAR Collaboration, QM2017 (Xu Sun poster)

- First measurement of ϕ meson spin alignment at $\sqrt{s_{NN}} = 19-62$ GeV.

- → With high statistics STAR data from 2011 and 2014, non-zero polarization observed for both Λ and $\overline{\Lambda}$ in 200GeV mid-central Au+Au collisions.
- > The Λ and $\overline{\Lambda}$ polarization shows azimuthal dependence. The difference of P_H , for Λ and $\overline{\Lambda}$ combined, between the most in-plane bin and the most out-of-plane bin is 4.7 σ . The data is consistent with the picture of a low viscosity system with maximum vorticity at equator.
- > First measurement of ϕ -meson spin alignment at $\sqrt{s_{NN}} = 19-62$ GeV.
- → ϕ spin alignment signal ρ_{00} shows weak beam energy dependence and non-significant p_T dependence with current statistic and systematic uncertainties.

Back Up

➤ With such dependence, dP_H/dp_T has to be as large as 0.5GeV^{-1} in order to explain the observed azimuthal dependence of P_H , which is not possible from the $P_H(p_T)$ study.

A global polarization vs $\sqrt{s_{NN}}$

Extract the vorticity and the magnetic field.

$$P_{\Lambda} \approx \frac{1}{2} \frac{\omega}{T} - \frac{\mu_{\Lambda}B}{T}$$
$$P_{\overline{\Lambda}} \approx \frac{1}{2} \frac{\omega}{T} + \frac{\mu_{\Lambda}B}{T}$$
$$\frac{\omega}{T} = P_{\Lambda} + P_{\overline{\Lambda}}$$
$$\frac{B}{T} = \frac{1}{2\mu_{\Lambda}} (P_{\overline{\Lambda}} - P_{\Lambda})$$

Phys. Rev. C 95, 054902 (2017)

Vorticity $\frac{\omega}{T} \sim 2-10\%$ $\omega \approx 0.02-0.09 \ fm^{-1}$ $(\hbar = 1, k_B = 1)$ (assume T = 160MeV)

 Magnetic field Consistent with zero.

- Senerated Monte Carlo ϕ -meson events with different ρ_{00} by using STAR published ϕ -meson spectra and elliptic flow and smeared event plane with two different event plane distributions based on event plane resolution measured by STAR.
- \succ Resolution correction factor can be extracted with a linear fit.