Strangeness in Quark Matter (SQM 2019) June 10-15, Bari, Italy

Probing QCD matter via K*⁰ and φ resonance production at RHIC

Md Nasim For the STAR Collaboration (IISER Berhampur)

Outline

- Motivation
- The STAR Experiment
- Invariant yields of K^{*0} and φ
- Elliptic flow of K^{*0} and φ
- Directed flow of $\boldsymbol{\varphi}$
- Summary

Motivation

K^{*0} and φ :

- Factor of 10 difference in lifetimes
- Close to proton (baryon) mass
- Small hadronic interaction cross section for $\boldsymbol{\varphi}$

- Lifetime of resonances are comparable to the typical lifetime of the fireball.
- Resonances in heavy-ion collisions can be used to study properties and evolution of the medium

The STAR Experiment

- Uniform acceptance
- Full azimuthal coverage
- Excellent particle identification capability

K^{*0} and ϕ reconstruction

 K^{*0} and ϕ reconstructed via hadronic decay channels

The signal is fitted with a Breit-Wigner function plus a linear residual background after mixed event background subtraction.

Mean transverse momentum at Top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE) Phys. Rev. C 88 (2013) 044910 (ALICE)

Mean transverse momentum at top RHIC and LHC energies

- Mean p_T increases with mass
- Mean p_T of K* and ϕ close to proton (similar mass)
- Mean p_T at LHC > Mean p_T at RHIC, consistent with increased radial flow at LHC

Particle ratios (K*⁰/K- and φ/K-) at top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 88 (2013) 044910 (ALICE)

Particle ratios (K*⁰/K⁻ and φ/K⁻) at top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 88 (2013) 044910 (ALICE)

Particle ratios (K*⁰/K- and ϕ /K-) at top RHIC and LHC energies

Dominance of hadronic re-scattering at top RHIC and LHC energies

Phys. Rev. C 84 (2011) 034909 (STAR) Phys. Rev. C 79 (2009) 064903 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE) Phys. Rev. C 79 (2009) 034909 (STAR) Phys. Rev. C 88 (2013) 044910 (ALICE)

K^{*0} spectra measurement at lower BES energies

- Spectra is fitted with Levy fit
- · Fit functions used to extrapolate yields in unmeasured regions

Phys. Rev. C 93 (2016) (R) 21903 (STAR)

Particle ratios (K*⁰/K⁻ and ϕ /K⁻) at BES energies

 ϕ/K^- ratio : independent of centrality

K*0/K- ratio: decreases with increasing centrality, more re-scattering in central collisions

Phys. Rev. C 93 (2016) (R) 21903 (STAR) Phys. Rev. C 91 (2015) 024609 (ALICE)

Collectivity in heavy-ion collisions

 v_1 – Directed flow

Sensitive to initial dynamics

 v_2 – Elliptic flow

φ meson $v_1(y)$ from RHIC BES

Phys. Rev. Lett. 120 (2018) 062301 (STAR)

 dv_1/dy slope is extracted from a linear fit (|y| < 0.6)

φ meson dv_1/dy from RHIC BES

Phys. Rev. Lett. 120 (2018) 062301 (STAR)

For $\sqrt{s_{NN}}$ > **14.5 GeV:** (dv_1/dy) anti- $\Lambda \sim (dv_1/dy)$ anti- $p \sim (dv_1/dy) \phi$

- Particles which consist from produced quarks show similar behavior

 $\varphi \, v_2 \,$ from RHIC BES

Indication of small ϕ -meson v₂ at 11.5 and 7.7 GeV

K^{*0} v₂ from RHIC BES

- K^{*0} seems to follow the trend of ϕv_2 but with large uncertainty
- v₂ measurements will achieve better statistical significance with BES-II data

Summary

Invariant Yield:

- K*⁰/K⁻ ratio in central Au+Au collisions is smaller than in d+Au (p+Au) and p+p collisions
- ϕ/K^{-} ratio does not depend on centrality

Consistent with hadronic re-scattering for resonances with short lifetime

Directed Flow:

• For $\sqrt{s_{NN}} > 14.5 \text{ GeV}$: (dv1/dy) anti- $\Lambda \sim (dv1/dy)$ anti- $p \sim (dv1/dy) \phi$

Particles which consist from produced quarks show similar behavior

Elliptic Flow:

- Indication of small ϕ -meson v₂ at 11.5 and 7.7 GeV
- $K^{*0}v_2$ seems to follow the trend of ϕv_2 but with large uncertainty

Dominance of hadronic interaction over partonic interaction at $\sqrt{s_{NN}} \le 11.5$ GeV