

The 19th International Conference on Strangeness in Quark Matter

May 17-21, 2021, sponsored by Brookhaven National Laboratory, Upton, New York

The STAR Detector Upgrades

Chi Yang (杨 驰)

for the STAR Collaboration

Shandong University

Recent Physics Programs at RHIC

Recent Physics Programs at RHIC

Beam Energy Scan Phase II program:

- RHIC run 2019-2021
- QCD phase diagram
- Such as CEP, Chiral phase transition...

Cold and hot QCD plans:

- RHIC run 2022+
- Properties of QCD matter
- Such as precise imaging of gluons and sea quarks inside protons and nuclei...

Detector Upgrades Commissioned by Run19 at RHIC

iTPC upgrade	EPD upgrade	eTOF upgrade
η <1.5	2.1 < η <5.1	-1.6<η<-1.1
p _T >60 MeV/c	Better trigger & b/g reduction	Extend forward PID capability
Better dE/dx resolution Better momentum resolution	Greatly improved Event Plane info (esp. 1st-order EP)	Allows higher energy range of Fixed Target program
Fully operational in 2019	Fully operational in 2018	Fully operational in 2019

Cold QCD Plan at RHIC

arXiv:1602.03922

STAR 🖈

Unique and wide kinematic ranges in x-Q²

With the detection capabilities at forward rapidity, STAR will provide unique opportunities in the study of fundamental QCD properties from nucleon to nuclei. ✓ Observables free of final state effects

Gluons: R_{pA} of direct photonSea-quarks: R_{pA} of DY

✓ Access saturation regime at forward rapidity

The Physics at RHIC beyond 2021+

When Looking Forward

Observables:

- ✓ Inclusive and di-jets
- ✓ Hadrons in jets
- ✓ Lambda's
- ✓ Correlations mid-forward & forward-forward rapidity

Requirements from Physics:

- ✓ Good e/h separation
- ✓ Hadrons, photon, π^0 identification

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/√E+10%	
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c</p<sub>
	photon suppression	with 20-30% 1/p _T

FY2022: 500 GeV polarized pp run All other data taking in parallel to sPHENIX data taking campaign

These crucial physics topics called for new detectors at forward rapidity.

New Detectors at STAR Forward Rapidity

FST, 3 Silicon disks: at 146, 160, and 173 cm from IP

Built on successful experience with STAR IST

- Single-sided double-metal mini-strip sensors
 - \checkmark Granularity: fine in f and coarse in R
 - ✓ Si from Hamamatsu
- Frontend chips: APV25-S1 \rightarrow IST all in hand
- Reuse IST DAQ system and cooling system

FCS: 7 m from the IP

ECal: reuse PHENIX SHASHLYK 1496 Ch.

- Lateral tower Size 5.5 x 5.5 x 33 cm³ (18 X_0)

HCal: Fe/Sc (20mm/3 mm) sandwich 520 Ch.

- Lateral tower size $10 \times 10 \text{ cm}^2$, $\sim 4.5\lambda$
- ✓ in close collaboration with EIC R&D

Preshower:

• Existing EPD, with additional splitter

FTT, 4 sTGC disks: at 307, 325, 343 and 361 cm from IP

- location inside Magnet pole tip opening
 - ✓ inhomogeneous magnetic field
- 4 quadrants double sided sTGC \rightarrow 1 disk
 - ✓ sTGC technique developed by ATLAS
- Position resolution: ~200 um
- Readout: based on VMM-chips

Forward Silicon Tracker, fSTAR

- Three disks, 36(+12) modules (NCKU/UIC)
 - Mechanical structure (NCKU)
 - Flexible hybrid (SDU/IU)
 - Silicon strip sensors (UIC/BNL)
 - APV25 frontend chips* (UIC)
 * in-hand and probe-tested
- Integration (BNL)
 - Mechanical supporting structure
 - Installation tooling
- Cooling system (BNL/NCKU)
 - Cooling lines
 - Cooling manifold
 - Rack (cooler, pumps)
- DAQ system (BNL/IU/SDU)
 - Inner signal cables
 - Outer signal cables, patch panel boards, readout modules, readout controllers, crates

Blue: existing Red: new

Forward Silicon Tracker, Module Design

Each module splits into two regions

- ✓ Inner-radius region: 5 < R < 16.5 cm
 - 1 Kapton flexible hybrid
 - 1 Si sensor: $128 \times 4 (\phi \times R)$ strips
 - 4 APV chips
- ✓ Outer-radius region: 16.5<R<28 cm
 - 1 Kapton flexible hybrid
 - 2 Si sensors: $128 \times 4 (\phi \times R)$ strips
 - 4 APV chips
- ✓ material budget: ~1.5% X_0 per disk

Mechanical structure is made of

- ✓ PEEK (main structure, tube holder)
- ✓ Stainless steel (cooling tube)
- \checkmark Aluminum (heat sinks)

Module assembly is done at two sites

- ✓ TiDC (NCKU): gluing inner/outer hybrids and mechanical structures together
- ✓ FNAL (UIC): mount/wire-bond AVPs and Silicon sensors on hybrids

Forward Silicon Tracker – Prototype Module Performance

Mechanical structure production at NCKU

T-Board production at SDU

Pre-Installation at BNL

Performance of two fully assembled prototype modules evaluated with cosmic ray:

- ✓ All channels can be read out (KPP: > 85%)
- ✓ Efficiency higher than 90% (KPP: > 90%) Key Performance Parameter

The estimated completion of module production is end of May 2021.

Forward sTGC Tracker, fSTAR

Forward sTGC Tracker, fSTAR

Integrations & DAQ: BNL

From 2018 till now:

- ✓ Three versions of module prototypes
- \checkmark Three versions of electronics prototype

30 x 30 cm² prototype

60 x 60 cm² prototype

Module Production: **SDU**

Commissioning & software: BNL, SDU

Detector	Produced	Shipped	Installed
1 st prototype	Oct.2018	Jan.2019	Jun.2019
2 nd prototype	Jan.2019	Jul.2020	May 2021
3 rd prototype	Oct.2020	N/A	N/A
Final modules	<u>May 2021</u>	<u>Jun.2021</u>	<u>Sep.2021</u>

55 x 55 cm² pentagon

Electronics: **USTC**

Forward sTGC Tracker – Prototype Module Performance

Forward sTGC Tracker Commissioning

20 stations (16+4 spares) needed:

- ✓ 40 chambers (32+8)
- ✓ 120 Front-End Boards (96+24)
- ✓ 40 Read Out Drivers (32+8)

sTGC module production at SDU

sTGC module test at SDU

2nd prototype installed at STAR in Run21

The estimated completion of module production is end of May 2021.

Forward Calorimeter System, fSTAR

FCS Requirements

Detector	pp and pA	AA
ECal	$\sim 10\%/\sqrt{E}$	$\sim 20\%/\sqrt{E}$
HCal	~50%/√E+10%	

Forward Calorimeter System (FCS)

- ✓ ECal 1496 channels ~ 8 tons
- ✓ HCal 520 channels ~ 30 tons
- ✓ SiPM Readout Bias ~ 67V
- \checkmark New digitizers + Trigger FPGA = DEP boards
- ✓ Total of 48+18+12 = 78 DEP boards
- ✓ 3 DEP-IO boards for triggering

Module Installation

DEP installation

FCS Commissioning, Run21

https://www.bnl.gov/newsroom/news.php?a=217681

FCS fully operational in Run21. Works great out of box! Assembling FCS in Dec. 2020 at BNL

From Online @ STAR Physics run (Au+Au 7.7 GeV)

Organizational Structure in STAR Forward Upgrade

Efficient and professional collaborating within STAR collaboration!

From RHIC to EIC

fSTAR at RHIC provides opportunities in:

✓ Detector R&D with techniques potentially used in EIC

- HCal+SiPM readout same as EIC-fHCal (joint STAR EIC R&D)
- Silicon technique for EIC tracker
- sTGC technique for EIC trigger/tracker

✓ Help to realize the scientific promise of the EIC

- Inform the physics program
- Quantify experimental requirements

✓ Train the young talents especially on detector R&Ds for EIC

• Several tens of the graduate/undergraduate students working on fSTAR

- Detector upgrades finished for BES-II at STAR significantly increase the detection capabilities at mid-rapidity.
- Detector upgrades in forward rapidity at STAR pushes the detection capability to forward.
- ✓ FCS fully operational in the current RHIC Run21. S
- ✓ FTS fully operational in the coming RHIC Run22.

- fSTAR will enable crucial measurements in RHIC Cold QCD and Hot QCD plans in the coming years from 2022 to 2025.
- fSTAR provides a "bridge" connecting RHIC and EIC.

FST Integration --- Backup

FTT Multiplane Assembly -- Backup

N-Pentane+CO₂ Gas Mixing System -- Backup

