NCQ scaling of $f_0(980)$ elliptic flow in 200 GeV Au+Au collisions by STAR and its constituent quark content

Jie Zhao and Fuqiang Wang (for the STAR collaboration)

Department of Physics and Astronomy, Purdue University

Abstract

Searching for exotic state particles and studying their properties have furthered our understanding of quantum chromodynamics (QCD). The $f_0(980)$ resonance is an exotic state with relatively higher production rate in relativistic heavy-ion collisions, decaying primarily into $\pi\pi$. Currently the structure and quark content of the $f_0(980)$ are unknown with several predictions from theory being a $q\bar{q}$ state, a $qq\bar{q}q$ state, a $K\bar{K}$ molecule state, or a gluonium state. We report the first $f_0(980)$ elliptic flow (v_2) measurement from 200 GeV Au+Au collisions at STAR. The transverse momentum dependence of v_2 is examined and compared to those of other hadrons (baryons and mesons). The empirical number of constituent quark (NCQ) scaling is used to investigate the constituent quark content of $f_0(980)$ [1], which may potentially address an important question in QCD. We will report the findings of our investigation and discuss its implications.

[1] A. Gu, T. Edmonds, J. Zhao, F. Wang, Phys. Rev. C 101, 024908 (2020), arXiv:1902.07152