2

3

4

5

6

7

8

9

10

11

12

13

14

15

Overview of recent quarkonium measurements in p+p collisions with the STAR detector

Leszek Kosarzewski, Qian Yang for the STAR Collaboration

Abstract

Heavy quarkonia are important probes in searching for the quarkgluon plasma (QGP) and studying its properties. The J/ψ suppression and sequential melting of different Υ states in heavy-ion collisions are key experimental observables to study the QGP. However, to interpret the observed suppression in heavy-ion collisions, a good understanding of the heavy quarkonium production mechanism in vacuum is needed. Measurements in p+p collisions of quarkonium production cross sections, its dependence on charged-particle multiplicity, polarization as well as the newly proposed J/ψ production within jets will contribute towards a comprehensive picture of the heavy quarkonium production process.

In this talk, we will present an overview of the measurements of 16 the Υ and J/ψ production in p+p collisions performed by the STAR 17 experiment. The rapidity and $p_{\rm T}$ dependences of different Υ states 18 measured at $\sqrt{s} = 500$ GeV will be reported. Normalized quarko-19 nium yields as a function of normalized charged particle multiplic-20 ity will also be presented and compared to different model calcula-21 tions. We will also present the first measurement of the fraction of 22 charged jet transverse momentum $(p_{\rm T})$ carried by the J/ψ meson, 23 $z(J/\psi) = p_{\rm T}(J/\psi)/p_{\rm T}(jet)$, at $\sqrt{s} = 500$ GeV at RHIC. Compar-24 isons to model calculations and similar measurements carried out at 25 the LHC will be presented, and its physics implications will be dis-26 cussed. Finally, the measured J/ψ polarization at $\sqrt{s} = 200$ GeV will 27 be presented and compared to model calculations. 28