1	Estimate of a new baseline for the chiral magnetic effect in isobar collisions at RHIC
2	Yicheng Feng ^{1, *}
3	(for the STAR Collaboration)
4 5	¹ Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA (Dated: March 13, 2022)
6	Recently, STAR reported the isobar $\binom{96}{44}$ Ru + $\frac{96}{44}$ Ru, $\frac{96}{40}$ Zr + $\frac{96}{40}$ Zr) results for the chiral magnetic
7	effect (CME) search [1]. The Ru+Ru to Zr+Zr ratio of the CME-sensitive observable $\Delta\gamma$, normalized
8	by elliptic anisotropy (v_2) , is observed to be close to the inverse multiplicity (N) ratio. In other
9	words, the ratio of the $N\Delta\gamma/v_2$ observable is close to the naive background baseline of unity.
10	However, nonflow correlations are expected to cause the baseline to deviate from unity. To
11	further understand the isobar results, we study nonflow effects using the isobar data by studying
12	two-particle correlations as functions of pseudorapidity and azimuthal angle differences $(\Delta \eta, \Delta \phi)$
13	of the pairs. We fit this 2D distribution of same-sign pairs and attempt to extract the "true"
14	v_2 , whose difference from the measured v_2 is estimated as the nonflow contribution to the latter.
15	We decompose the nonflow contributions to $N\Delta\gamma/v_2$ (isobar ratio) into three terms [2] and
16	quantify each term by using the nonflow in v_2 measurement, published STAR data [1] and HIJNG
17	simulations. From these estimates, we arrive at a new baseline of the isobar ratio of $N\Delta\gamma/v_2$ for
18	the CME. We report this new baseline and discuss its implications.
19	
20	 M. Abdallah et al. [STAR], Phys. Rev. C 105, no.1, 014901 (2022)
21	[2] Y. Feng, J. Zhao, H. Li, H. j. Xu and F. Wang, Phys. Rev. C 105, no.2, 024913 (2022)

* feng216@purdue.edu