First Observation of $\frac{4}{\bar{\Lambda}}\bar{H}$ in heavy-ion collisions at RHIC

Junlin Wu

(for the STAR Collaboration)

Institute of Modern Physics, Chinese Academy of Sciences

Abstract

2	Matter-antimatter asymmetry is a precondition necessary to explain the existence of
3	our world made predominately of matter over antimatter. Antimatter is rare in the current
4	universe making it difficult to study, but the Relativistic Heavy-Ion Collider (RHIC) provides
5	us a unique opportunity to study antimatter with high-energy nuclear-nuclear collisions.
6	In this talk, we will report the first observation of $\frac{4}{\Lambda}\overline{H}$ with the STAR experiment at
7	RHIC. $\frac{4}{\Lambda}\overline{H}$ is the heaviest anti-hypernucleus ever observed in experiments. Its observation
	will bring new opportunities for the study of matter antimatter asymmetry. We will also

1

9 10 RHIC. $\frac{4}{\Lambda}\overline{H}$ is the heaviest anti-hypernucleus ever observed in experiments. Its observation will bring new opportunities for the study of matter-antimatter asymmetry. We will also report the various production yield ratios among (anti-)hypernuclei and (anti-)nuclei, as well as the lifetime measurements of ${}^{3}_{\Lambda}H$, ${}^{3}_{\Lambda}\overline{H}$, ${}^{4}_{\Lambda}H$, and ${}^{4}_{\Lambda}\overline{H}$.