Measurements of ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He Production in $\sqrt{s_{NN}}$ = 3.0 - 3.5 ² **GeV Au+Au Collisions at RHIC**

³ *Chenlu* Hu^{1,∗} for STAR collaboration

⁴ ¹University of Chinese Academy of Science

⁵ **Abstract.** Hypernuclei, which are bound states of nuclei with at least one hy-⁶ peron, serve as excellent experimental probes for studying the hyperon-nucleon ⁷ (Y-N) interaction. In these proceedings, the measurements of A=4 hypernu- ϵ clei (${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He) production from the RHIC-STAR experiment utilizing the fixed target datasets will be presented. The measured yields dN/dy of $^{4}_{A}H$ and ^{4}He as a function of rapidity will be shown from $\sqrt{8\pi}$ = 3.0, 3.2 and 3.5 GeV ⁴/₁₄ Ale as a function of rapidity will be shown from $\sqrt{s_{NN}}$ = 3.0, 3.2 and 3.5 GeV Au+Au collisions. Additionally, the energy dependencies of the ratio of $^{4}_{\Lambda}H/\Lambda$ and ${}^{4}_{\Lambda}$ He/ Λ will be examined to explore isospin effects. The mass dependence 13 of the mean transverse momentum $\langle p_T \rangle$ will be also discussed. Furthermore, ¹⁴ calculations from PHQMD, thermal model and transport model JAM plus coa-¹⁵ lescence afterburner will be compared to these results and the relevant physics ¹⁶ implications will be discussed.

¹⁷ **1 Introduction**

 Relativistic heavy ion collisions are an abundant source of strangeness. As strange quarks have to be newly produced during the hot and dense stage of the collision, they are ²⁰ thought of carrying information on the properties of the matter that was created [\[1,](#page-3-0) [2\]](#page-3-1). Hy-²¹ pernuclei, which consist of at least one hyperon, serve as an excellent experimental tools for studying the hyperon-nucleon $(Y-N)$ interaction. It is well known that Y-N interactions, es- pecially at high baryon density, are not only essential for understanding the inner structure $_{24}$ of compact stars [\[3,](#page-3-2) [4\]](#page-3-3), but also for describing the hadronic phase of heavy-ion collisions. Heavy-ion collisions provide an environment where it is possible to study the Y-N interac- tion under finite temperature and density conditions through measurements of hypernuclei properties, such as their collective flow and production yields.

 $A=4$ mirror hypernuclei ($^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He) are substantially tighter bound states compared to the hypertriton $({}^{3}_{\Lambda}H)$. The existence of the spin-1 excited states $({}^{4}_{\Lambda}H^{*}(1^{+})$ and ${}^{4}_{\Lambda}He^{*}(1^{+}))[5]$ ${}^{4}_{\Lambda}He^{*}(1^{+}))[5]$ ³⁰ may also enhance the measured yields through feed-down. As such, their yields allow us 31 to gain insight on the effects of hypernuclear binding, spin and isospin content on their pro-³² duction in heavy-ion collisions. In these proceedings, the yields dN/dy and mean transverse
³³ momentum p_T spectra of ⁴; H and ⁴; He in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.0 - 3.5 GeV will be and the index proceduring the state $\frac{d}{dx}$ and the index $\frac{d}{dx}$ and the index of $\frac{d}{dx}$ and $\frac{d}{dx}$ and the index of $\frac{d}{dx}$ and $\frac{d}{dx}$ and the index of $\frac{d}{dx}$ and $\frac{d}{dx}$ and the index of $\frac{d}{dx}$ a ³⁴ discussed.

[∗] e-mail: huchenlu@ucas.ac.cn

³⁵ **2 Experimental and Data Analysis**

³⁶ The STAR experiment carried out the Beam Energy Scan (BES) program in order to ³⁷ study the properties of quark-gluon plasma (QGP) and search for quantum chromodynamics ³⁸ (QCD) critical point. In BES-II program, by fixed-target (FXT) mode, the center of mass 39 collision energy extends from 7.7 GeV down to 3.0 GeV.

In this analysis, we used the dataset of Au + Au collisions at $\sqrt{s_{NN}} = 3.0 - 3.5$ GeV collected using the FXT setup at RHIC by the STAR experiment. We mainly used Time Pro-⁴² jection Chamber (TPC) detector for particle identification. The hypernuclei ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He are reconstructed with following decay channels: ${}_{\Lambda}^{4}H \rightarrow {}^{4}He + \pi^{-}$, ${}_{\Lambda}^{4}He \rightarrow {}^{3}He + p + \pi^{-}$. The secondary decay topology is reconstructed by the KFParticle program which is based on a secondary decay topology is reconstructed by the KFParticle program which is based on a Kalman filter method[\[6\]](#page-3-5). In the program, the error-matrices are used to enhance the recon- struction significance. A set of cuts on topological variables are applied to the hypernuclei candidates to optimize the signal significance.

⁴⁸ **3 Results and Discussions**

⁴⁹ **3.1 Particle Yields**

The *p*_T-integrated yields dN/dy for ${}_{\Lambda}^{4}H$ and ${}_{\Lambda}^{4}He$ are calculated from the *p*_T spectra by
see Combining data in the measured *p_R* range and function-fitting extrapolation in the unmeasured 51 combining data in the measured p_T range and function-fitting extrapolation in the unmeasured ϵ_2 *p*_T range. Figure [1](#page-1-0) presents the rapidity dependence of the dN/dy in 0-10% and 10-40% cen- $\frac{\mu_{\text{P}}}{\mu_{\text{P}}}$ range. Figure 1 presents the rapidity dependence of the drydy in 0-10% and 10-40% central Au + Au collisions across a range of $\sqrt{s_{\text{NN}}}$ from 3.0 to 3.5 GeV. The rapidity distributions ⁵⁴ show slight variations, with a downward trend in central collisions and an increase towards backward rapidity in mid-central collisions. In 0-40% centrality, the $^{4}_{\Lambda}$ He yield at mid-rapidity ⁵⁶ is comparable to that of ${}^{4}_{\Lambda}$ H. The prediction from transport model Jet AA Microscopic (JAM) ⁵⁷ plus Coalescence[\[7,](#page-3-6) [8\]](#page-3-7) is plotted for comparison. In the JAM+Coalescence model, the JAM ⁵⁸ transport model generates hadron phase space distributions at freezeout, followed by a coales-₅₉ cence procedure that forms (hyper)nuclei when the relative momentum and spatial distance ⁶⁰ of their constituents fall within defined limits. JAM+Coalescence calculations could describe ⁶¹ the rapidity dependence of dN/dy for $^{4}_{\Lambda}$ H in 0-40% centrality qualitatively.

Figure 1. Rapidity distribution of $^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He in 0-10% and 10-40% Au + Au collision at $\sqrt{s_{NN}}$ = 3.0 - 3.5 GeV. The symbols represent measurements while the lines represent JAM+Coalescence calculations.

Figure 2. Mass dependence of measured *dN*/*d*y scaled by the spin degeneracy factor (2J+1). The symbols represent measurements while the lines represent different model calculations.

 ϵ_2 ϵ_2 Figure 2 shows *dN/dy* for different particles scaled by their corresponding spin degener-
 ϵ_3 acy factor 2J+1. The measured *dN/dy* exhibits an approximate exponential dependence on ⁶³ acy factor 2J+1. The measured dN/dy exhibits an approximate exponential dependence on mass, but the yields of A=4 hypernuclei are above this trend shown as grey lines, which may mass, but the yields of A=4 hypernuclei are above this trend shown as grey lines, which may ⁶⁵ explained by the feed-down from the excited states of $^{4}_{\Lambda}$ H and $^{4}_{\Lambda}$ He. Dashed lines are calcu-⁶⁶ lations from JAM+Coalescence afterburner, they shows a similar exponential dependence of ⁶⁷ *dN*/*dy*/(2J+1) vs mass. Here, Λ is weighted to the data, and different coalescence parameters for ${}_{\Lambda}^{3}H$ and ${}_{\Lambda}^{4}H$ (${}_{\Lambda}^{4}He$) are needed to describe the data. The ΔR is 4.8 fm for both ${}_{\Lambda}^{3}H$ an ⁶⁹ (4 He), and ∆P is 0.24 GeV/*c* for 3 H and 0.38 GeV/*c* for 4 H (4 He). The larger ∆P may reflect ⁷⁰ of the tighter binding of A=4 hypernuclei. The Parton Hadron Quantum Molecular Dynamics ⁷¹ (PHQMD)[\[9\]](#page-3-8) approach could describe the yields of Λ , ${}^{4}_{\Lambda}H$ and ${}^{4}_{\Lambda}He$, but overestimates that ⁷² of $^{3}_{\Lambda}$ H.

⁷³ **3.2 Particle Yield Ratios**

Figure [3](#page-2-0) presents the particle ratios of hypernuclei to hyperon $({}^{4}_{\Lambda}H/\Lambda$ and ${}^{4}_{\Lambda}He/\Lambda$) as a

⁷⁵ function of collision energy. It shows the similar decreasing trend of $^{4}_{\Lambda}H/\Lambda$ and $^{4}_{\Lambda}He/\Lambda$ with ⁷⁶ the increasing energy. ${}^{4}_{\Lambda}H/\Lambda$ is systematically larger than ${}^{4}_{\Lambda}He/\Lambda$ probably because there are

 77 more neutrons than protons in the colliding system. The measured data are well described

 78 with JAM+Coalescence calculations, while overestimated by the Thermal-Fist $[10]$.

Figure 3. $^{4}_{\Lambda}$ H/ Λ and $^{4}_{\Lambda}$ He/ Λ at mid-rapdity in 0-40% central Au+Au collisions as function of the center of mass collision energy. The symbols represent measurements while the lines represent thermal model and JAM+Coalescence calculations.

⁷⁹ **3.3 Mean Transverse Momentum**

⁸⁰ Figure [4](#page-3-10) presents the mass dependence of mid-rapidity $\langle p_T \rangle$ for Λ, $^3_\Lambda$ H, $^4_\Lambda$ H and $^4_\Lambda$ He, ⁸⁰ **from the** $\sqrt{s_{NN}} = 3.0 - 3.5$ **GeV in 0-10% and 0-40% Au+Au collisions. The measured** $\langle p_T \rangle$ ⁸² follow the linear mass scaling up to 3.5 GeV, whcih is consistent with coalescence as the 83 dominant process for hypernuclei production at mid-rapidity. Both JAM+Coalescence and ⁸⁴ PHQMD model could reproduce the mass dependence of $\langle p_T \rangle$ qualitatively.

Figure 4. Mass dependence of the mid-rapidity $\langle p_T \rangle$ for Λ , ${}_{\Lambda}^3$ H, ${}_{\Lambda}^4$ H and ${}_{\Lambda}^4$ He, from the $\sqrt{s_{NN}}$ = 3.0 -3.5 GeV in 0-10% and 0-40% Au+Au collisions. The symbols represent measurements while the lines represent JAM+Coalescence and PHQMD model calculations.

⁸⁵ **4 Summary and Outlook**

 ϵ_{6} In summary, we carry out the rapidity and centrality dependence measurement of $^{4}_{\Lambda}H$ and $^{4}_{\Lambda}$ He yields in Au+Au collisions from $\sqrt{s_{NN}}$ = 3.0 to 3.5 GeV in the high-baryon-density region. JAM+Coalescence model could qualitatively reproduce the rapidity and centrality ⁸⁹ dependence of ⁴_ΛH production. The yields of Λ, ${}_{\Lambda}^{3}H$, ${}_{\Lambda}^{4}H$ and ${}_{\Lambda}^{4}He$ do not strictly follow ⁹⁰ an exponential scaling with mass when divided by spin degeneracy, suggesting significant ⁹¹ contributions from feed-down of excited A=4 hypernuclei. The ratio of $^{4}_{\Lambda}H/\Lambda$ and $^{4}_{\Lambda}He/\Lambda$ are ⁹² well described with JAM+Coalescence calculations, while overestimated by Thermal-Fist. ⁹³ The linear mass scaling is observed in the mass dependence of mid-rapidity $\langle p_T \rangle$ up to 3.5 94 GeV, which is well described by JAM+Coalescence afterburner and PHQMD calculations ⁹⁵ qualitatively. This is consistent with coalescence as the dominant process for hypernuclei ⁹⁶ production at mid-rapidity.

97 The results presented in these proceedings are based on a subset of the BES-II datasets. In Run 21, STAR collected 2 billion events at $\sqrt{s_{NN}} = 3$ GeV. This larger dataset will enable ⁹⁹ measurements of heavier hypernuclei (A>4) and may help us gain valuable insights into the ¹⁰⁰ mass dependence of hypernuclei production.

¹⁰¹ **References**

- ¹⁰² [1] P. Koch, B. Muller and J. Rafelski, Phys. Rept. 142, 167 (1986)
- ¹⁰³ [2] J. Chen et al., (2024), arXiv:2407.02935 [nucl-ex]
- ¹⁰⁴ [3] D. Gerstung, N. Kaiser, and W. Weise, Eur. Phys. J. A56, 175 (2020)
- ¹⁰⁵ [4] D. Lonardoni et al., Phys. Rew. Lett. 114, 092301 (2015)
- ¹⁰⁶ [5] F. Schulz et al. (A1 Collaboration), Nucl. Phys. A 954 (2016), 149-160
- ¹⁰⁷ [6] X. Y. Ju, Y. H. Leung, S. Radhakrishnann et al., Nucl. Sci. Tech. 34 (2023) 15
- ¹⁰⁸ [7] Y. Nara, EPJ Web Conf. 208 (2019), 11004
- ¹⁰⁹ [8] J. Steinheimer et al., Phys. Lett. B 714 (2012), 85-91
- ¹¹⁰ [9] S. Gläßel et al., Phys. Rev. C 105 (2022) no.1, 014908
- ¹¹¹ [10] T. Reichert et al, Phys. Rev. C 107 (2023) no.1, 014912