

Directed Flow of Hyper-Nuclei at High Baryon Density in STAR

Junyi Han^{1,2} (jhan@mails.ccnu.edu.cn) for the STAR Collaboration

Supported in party by

Office of

¹Central China Normal University

²Heidelberg University

Junyi Han

Outline

- 1. Motivation
- 2. Datasets and Particle Reconstruction
- 3. Hyper-Nuclei analysis in Au+Au collisions at $\sqrt{s_{NN}} = 3.2-4.5$ GeV
 - I. Directed Flow v_1
 - II. Mass and Energy Dependence of v_1
- 4. Summary and Outlook

Heavy-Ion Collisions and QCD Phase Diagram

> At $\mu_B = 0$, smooth crossover (LGT + data)

- → At large μ_B , may have 1st order phase transition → **QCD critical point**
- Hyperon Puzzle: difficult to reconcile the measured masses of neutron stars with the presence of hyperons in their interiors
- Understanding hyperon-nucleon(Y-N) interaction in high density region is essential for solving the hyperon puzzle

Junyi Han

Production of Light- and Hyper-Nuclei

Thermal model calculation results

^[1] A. Andronic et al, Phys. Lett. B697, 203(2011)

- Light- and Hyper-Nuclei production are enhanced at high baryon density region
- Light-Nuclei carry information about local baryon density
 fluctuations at freeze-out; offers insights on the Final State
 Interaction(FSI): N-N interation
- Study Hyper-Nuclei properties provide important information about Y-N interation
- 4) Collective flow is sensitive to the equation of state of nuclear matter -> help explore Hyper-Nuclei production mechanism and hyperon interactions in the medium

Junyi Han

^[2] J. Steinheimer et al. Phys. Lett. B714, 85(2012)

Collective Flow

.

A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

The particle azimuthal distribution measured with respect to the reaction plane can be expanded in Fourier series:

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos(n(\phi - \psi_{RP}))\right)$$

Directed flow: $v_{1} = <\cos(\phi - \psi) >$
Elliptic flow: $v_{2} = <\cos(2(\phi - \psi)) >$

- In heavy ion collisions, particles show collective motion due to pressure gradients within the dense nuclear matter
- Directed flow considered as a sensitive probe of the equation of state of the dense matter

Junyi Han

STAR Detector

Time Projection Chamber (TPC)

- ☐ Momentum reconstruction
- Particle tracking and Identification
- Seudorapidity coverage $-2.0 < \eta < 0$ (for fixed target)

barrel Time-of-Flight (bTOF)

- Particle Identification
- □ Pseudorapidity coverage $-1.5 < \eta < 0$ (for fixed target)

end-cap Time-of-Flight (eTOF)

- □ Particle Identification
- □ Pseudorapidity coverage $-2.2 < \eta < -1.5$ (for fixed target)

Event Plane Detector (EPD)

- □ Event plan reconstruction
- □ Pseudorapidity coverage $-5.3 < \eta < -2.6$ (for fixed target)

Junyi Han

STAR BES-II

Fixed target mode ($\sqrt{s_{NN}} = 3.0 - 13.7 \text{ GeV}$)

- STAR BES-II
 - \Box 10× statistics compared to BES-I
 - □ FXT energy extends down to 3 GeV
 - □ This analysis: $\sqrt{s_{NN}} = 3.2 \rightarrow 4.5$ GeV (eTOF is not

used in this analysis)

Junyi Han

Dataset and Event Plane Reconstruction

DataSet	$\sqrt{s_{NN}} = 3.2 \text{ GeV} (2019)$	3.5 GeV (2020)	3.9 GeV (2020)	4.5 GeV (2020)
	(y _{target} = -1.14)	(y _{target} = -1.25)	(y _{target} = -1.37)	(y _{target} = -1.52)
Analyzed Events	~200M	~110M	~120M	~120M

- Event Plane reconstruction
- Reconstruction method: Q-vector method
- Calibration: recentering and shift
- EP resolution: three sub-events method $\langle \cos(\psi_1^{a} - \psi_r) \rangle = \sqrt{\frac{\langle \cos(\psi_1^{a} - \psi_1^{b}) \rangle \langle \cos(\psi_1^{a} - \psi_1^{c}) \rangle}{\langle \cos(\psi_1^{b} - \psi_1^{c}) \rangle}}$

- ➤ 5-40% centrality bin used in this analysis
- A. M. Poskanzer and S. A. Voloshin, Phys. Rev. C 58, 1671 (1998)

Junyi Han

21st Strangeness in Quark Matter, Strasbourg, France

η

Particle Identification

➢ Good particle identification capability based on TPC and TOF

- 1) π^- , ³He and ⁴He PID: only TPC
- 2) proton and deuteron PID: TPC (+bTOF for high momentum daughter track of ${}^{3}_{\Lambda}$ H when $\sqrt{s_{NN}} = 3.9$ GeV and above)

Junyi Han

Hyper-Nuclei Reconstruction

[1] Gorbunov and I. Kisel, Reconstruction of decayed particles based on the Kalman filter. CBM-SOFT-note-2007-003, 7 May 2007

[2] KF Particle Finder: M. Zyzak, Dissertation thesis, Goethe University of Frankfurt, 2016.

 $\succ \Lambda$, ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H are reconstructed with KFParticle package based on Kalman filter method to improve signal significance

> Obvious hyper-nuclei signals can be observed with the reconstructed invariant mass distributions

Hyper-Nuclei Acceptance

Junyi Han

Directed Flow v₁ Extraction

Extract v₁ with Event Plane Method:

> Extract signal N^R(weighted by the inverse of EP resolution of each centrality bin) in a given $(\phi - \psi_1)$ bin

$$N^{R}(\phi - \psi_{1}) = \int dM \frac{1}{R_{n}} \frac{dN}{d(\phi - \psi_{1})}$$

Fit the N^R in different rapidity to extract< v₁^{obs} >, then < v₁ > is corrected by the average EP resolution.

$$< v_1 > = < v_1^{obs,R} > < \frac{1}{R_1} >$$

• The average of resolution in wide centrality bin is determined from equation below, it is weighted by particle multiplicity.

$$< \frac{1}{R_1} > = \frac{\sum_{i=1}^{R} \frac{1}{R_1(i)} \times N_0(i)}{\sum_{i=1}^{R} N_0(i)}$$

H. Masui et al., Nucl. Instrum. Methods Phys. Res. A 833, 181 (2016)

Fitting function: $y = p_0 \left(1 + 2p_1 \cos(\phi - \psi_1) + 2p_2 \cos(2(\phi - \psi_1)) \right)$

Junyi Han

Directed Flow v₁

□ The v₁ slope is obtained by fitting the v₁(y) distribution with a polynomial function, where p₀ is the mid-rapidity v₁ slope (dv₁/dy|y=0)

Hyper- Nuclei	Fitting Function	p _T / A
Λ	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}3$	(0.4, 0.8)
³ _A H	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y}$	(0.33, 0.83)
$^{4}_{\Lambda}$ H	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y}$	(0.30, 0.75)

Light- Nuclei	Fitting Function	p_{T}/A
р	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}_3$	(0.4, 0.8)
d	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}_3$	(0.4, 0.8)
t	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}_3$	(0.4, 0.8)
³ He	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}_3$	(0.4, 0.8)
⁴ He	$\mathbf{v}_1(\mathbf{y}) = \mathbf{p}_0 \cdot \mathbf{y} + \mathbf{p}_1 \cdot \mathbf{y}_3$	(0.4, 0.8)

Junyi Han

Particle Mass Dependence

M.S. Abdallah et al., (STAR Collaboration), Phys. Lett. B 827, 136941 (2022)
 B. E. Aboona et al., (STAR Collaboration), Phys. Rev. Lett. 130, 212301(2023)
 Y. Nara et al., Phys. Rev. C 106, 044902 (2022)

 \Box Systematic uncertainties for v₁ slope:

Major source	$^{3}_{\Lambda}$ H	$^4_{\Lambda}{ m H}$	light-nuclei
EP resolution	4 %	4 %	4 %
Efficiency	2 %	2 %	2 %
Topological cuts / PID cuts	12 %	11 %	5 %
Total	13 %	12 %	6 %

- ❑ At given energy, for both light- and hyper-nuclei, it seems that the slopes of mid-rapidity v₁ are scaled with atomic mass number A or/and particle mass
- □ Hadronic transport model (JAM2 mean field κ = 380 MeV, potential with momentum dependence) plus coalescence calculations show similar mass dependence

Junyi Han

Collision Energy Dependence

- As the collision energy increases, the v₁ slope of light- and hyper-nuclei decreases, but trend of hyper-nuclei is rather independent from 3.5 to 4.5 GeV
- 2) Hadronic transport model (JAM2 mean field + Coalescence) calculations are consistent with observed energy dependence

Summary

- 1) Hyper-nuclei directed flow v₁ are compared to light-nuclei for $\sqrt{s_{NN}} = 3.2 4.5$ GeV in STAR (at high baryon density)
- 2) Hadronic transport model (JAM2 mean field + Coalescence) calculations for v₁ are consistent with observed mass and energy dependence
- 3) Particle mass and collision energy dependence of v_1 slope for light- and hyper-nuclei indicates coalescence mechanism dominates the production

Outlook:

- 1) STAR has collected 2 billion events for 3 GeV Au+Au collisions which will help us to constrain coalescence parameters for both light- and hyper-nuclei
- 2) eTOF data will help us to extend the acceptance for v_1 analysis

Thank you for your attention!