Multiplicity dependence of Hyperon and Hypertriton Production in Zr+Zr and Ru+Ru collisions at $\sqrt{s_{\rm NN}}=200\,{\rm GeV}$

Dongsheng Li (for the STAR Collaboration)

University of Science and Technology of China

February 15, 2024

In heavy-ion collisions, the production mechanism of hypernuclei, bound states of hyperons and nucleons, is still not fully understood. Recent theoretical model calculations show that a systematic measurement of the multiplicity dependence of yield ratios, such as ${}^{3}_{\Lambda}H/\Lambda$ and $S_{3}=({}^{3}_{\Lambda}H/{}^{3}He)/(\Lambda/p)$, can provide strong distinguishing power between different production mechanisms and offer insights into the possible connection between hypernuclei production yields and their internal structure. In 2018, STAR recorded a huge sample of about 4 billion minimum bias events from Zr+Zr and Ru+Ru collisions at $\sqrt{s_{\rm NN}}=200$ GeV, enabling a detailed investigation of the multiplicity dependence of hyperon and hypertriton production.

In this presentation, we present new measurements on hyperons $(\Lambda, \bar{\Lambda} \text{ and } \Xi^{-}, \bar{\Xi}^{+})$ and hypertriton, including their transverse momentum $(p_{\rm T})$ spectra and $p_{\rm T}$ -integrated yields

In this presentation, we present new measurements on hyperons $(\Lambda, \bar{\Lambda} \text{ and } \Xi^-, \bar{\Xi}^+)$ and hypertriton, including their transverse momentum (p_T) spectra and p_T -integrated yields (dN/dy), in four different centrality classes of Zr+Zr and Ru+Ru collisions at $\sqrt{s_{NN}} = 200$ GeV. The hyperon yields will be compared to those in Au+Au collisions to study the system size dependence of strangeness production. The yield ratios of ${}^3_\Lambda H/\Lambda$ and S_3 will be shown as a function of multiplicity and compared with model calculations. Physics implications on hypernuclei production mechanism as well as Y-N interaction will be discussed.