

Measurements of $^4_\Lambda He$ Lifetime in Au+Au Collisions at 3.2 and 3.5 GeV from STAR fixed target mode experiment

Xiujun Li (<u>lixiujun@mail.ustc.edu.cn</u>), for the STAR Collaboration University of Science and Technology of China, University of Tsukuba June 4, 2024

Abstract

Hypernuclei are bound nuclear systems of nucleons and hyperons. They are natural hyperon-baryon correlation systems and provide direct access to the hyperon-nucleon (Y-N) interaction. The precise measurement of Λ -hypernuclei lifetimes will shed light towards the understanding of the Y-N interactions. The high statistics data, collected with the STAR fixed target mode (FXT), provides a great opportunity to measure the ${}^{\Lambda}_{4}$ He production with good precision.

In this poster, we will present precise measurement of $^4_{\Lambda}$ He lifetime in Au+Au collisions at $\sqrt{s_{NN}}$ = 3.2 and 3.5 GeV from STAR fixed target mode experiment.

Motivation

- · Lifetime of hypernuclei probe of Y-N interaction
- Why ⁴He lifetime?
 - Scarcity of ⁴_ΛHe lifetime measurements
 - Published average[1][2]: $\tau_{exp}(^4_{\Lambda}\text{He})$ =250±19 ps
 - Low production rate and low reconstruction efficiency
 - Isospin mirror hypernuclei, ${}^4_{\Lambda}{\rm H}$ and ${}^4_{\Lambda}{\rm He}$
 - · Isospin dependence of the Y-N interaction
- Large data sample and high hypernuclei production
 - Abundantly produced hypernuclei due to the high baryon density
 - STAR BES-II → great opportunity for ⁴_ΛHe

⁴ He Reconstruction

- ${}^{4}_{\Lambda}$ He reconstructed via ${}^{4}_{\Lambda}$ He \rightarrow 3 He + π^- + p
 - Daughter particle identification from energy loss measurement using TPC

- Background reconstruction
 - Combinatorial background by rotating ³He between 10 to 350 degree randomly

 Raw counts are calculated within a 3σ mass range determined from gaussian fit with the bin counting methods in each proper decay length L/βγ (L is decay length) bin.

References

- [1] H. Outa et al., Nucl. Phys. A 639, 251c (1998)
- [2] J.D. Parker et al., Phys. Rev. C 76, 035501 (2007)
- [3] A. Gal, EPJ Web Conf., 259, 08002 (2022)

- After raw counts are corrected by efficiency in each $L/\beta\gamma$ bin, the counts at $\sqrt{s_{NN}}=3.2$ and 3.5 GeV in same $L/\beta\gamma$ bin are added together. The lifetime τ is extracted by fitting the counts with an exponential function.
 - $N(t) = N_0 e^{-L/\beta \gamma c \tau}$
- 4 He lifetime from STAR FXT $\sqrt{s_{NN}}$ = 3.2 and 3.5 GeV:

$$\tau_{_{\Lambda}He}^{4}=210\pm12(stat.)\pm11(syst.)[ps]$$

• STAR averaged result from $\sqrt{s_{NN}}$ = 3.2, 3.5, and 3 GeV:

$$\tau_{AHe} = 214 \pm 10 (stat.) \pm 10 (syst.) [ps]$$

- Most precise measurement of $^4_{\Lambda}{
 m He}$ to date
- World average ratio $\frac{\tau_{^4\mathrm{H}}}{\tau_{^4\mathrm{He}}^4}$:
 - $\frac{\Lambda_{\rm He}^4}{\tau_{\rm AHe}^4}$ = 0.92 ± 0.06, consistent within 2.5 σ with theoretically estimated value 0.74 ± 0.04 applying the isospin rule [3]

Summary

- The new lifetime measurement of ⁴_ΛHe in Au+Au collisions at √s_{NN} = 3.2 and 3.5 GeV from the STAR experiments with the fixed-target mode.
 - Consistent with STAR 3 GeV results and previous measurements within 1.2σ.
- The averaged ^A₄He lifetimes from measurements at √s_{NN} = 3, 3.2 and 3.5 GeV serves as the most precise data to date.

