Production of light nuclei in Au+Au collisions with the STAR BES-II program

2	Sibaram Behera ¹ and Yixuan Jin ²
3	(for the STAR Collaboration)
4	¹ Indian Institute of Science Education and Research (IISER) Tirupati, India
5	² Central China Normal University (CCNU), China

The production mechanism of light (anti-)nuclei in heavy-ion collisions can be either by the thermal 6 model or the coalescence model. By studying the yields and ratios of light (anti-)nuclei, we can gain 7 insight into their production mechanism and physical properties of the expanding system at freeze-out. 8 Furthermore, the enhancement in the light nuclei compound ratios such as $N_t N_p / N_d^2$ and $N_{^3He} N_p / N_d^2$ 9 from the coalescence baseline, has been suggested as a potential probe to search for the critical phe-10 nomena in the QCD phase diagram. This enhancement might be a consequence of the enhanced baryon 11density fluctuations when the system is in vicinity of the critical point or the first-order phase transi-12 tion. In the first phase of the Beam Energy Scan (BES-I) program at RHIC, an enhancement relative 13 to the coalescence baseline of the light nuclei yield ratio $(N_t N_p / N_d^2)$ is observed in the most central 14 Au+Au collisions at $\sqrt{s_{NN}}$ = 19.6 and 27 GeV with a combined significance of 4.1 σ . The large datasets 15 $(\sim 10 \times BES-I)$ taken by the STAR BES-II with enhanced detector capabilities will greatly improve the 16 precision of the new measurements. 17

In this talk, we will present the centrality and energy dependence of transverse momentum (p_T) spectra of p, \bar{p} , d, \bar{d} , and ${}^{3}He$ in Au+Au collisions at BES-II energies of $\sqrt{s_{NN}} = 7.7 - 27$ GeV. We will also report the centrality and energy dependence of integrated particle yields (dN/dy) and mean p_T $(\langle p_T \rangle)$ of light nuclei. We will discuss the centrality and p_T dependence of the coalescence parameters $(B_2(d) \text{ and } B_3({}^{3}He))$. The physics implications of these results will be discussed.