

Collision Energy Dependence of Hypertriton Production in Au+Au Collisions at RHIC

Xiujun Li
(for the STAR collaboration)
University of Science and Technology of China
University of Tsukuba
June 4, 2024

Supported in part by the

Introduction: hypernuclei

- STAR
- Hypernuclei: bound nuclear systems of non-strange and strange baryons
 - Natural hyperon-baryon correlation system

The first discovery of hypernucleus by Marian Danysz (right) and Jerzy Pniewski (left) in 1952

M. Danysz, J. Pniewski, Philos. Mag. 44 (1953) 348.

lightest hypernucleus $B_{\Lambda} \sim 0.15 MeV$ RMS radius $5 \sim 10~fm$

Introduction: YN interaction in dense matter

- Hypernuclei serve as a laboratory to study the hyperon–nucleon (YN) interaction
 - YN interaction is essential in probing neutron star inner core
 - **Hyperon puzzle**: do hyperons exist in the dense inner core of neutron stars?
 - No direct probe method
 - Rely on theoretical models
 - Lack of experimental data of YN, YNN, YY
 interactions to constrain theoretical models of
 the dense matter equation of state (EoS)

D. Chatterjee, Eur. Phys. J. A 52 (2016) 29

Introduction: the strangeness population factor \mathbf{S}_3

• S_3 may be sensitive to the onset of deconfinement

$$S_3 = \frac{{}_{\Lambda}^{3}H}{{}_{3}He \times \frac{\Lambda}{p}}$$

S. Zhang et al. PLB 684 (2010) 224–227

- S_3 maybe enhanced in a system involving partonic interactions
- Models suggest S_3 is more sensitive to the local baryon-strangeness correlation than the global baryon-strangeness correlation coefficient (C_{BS})

Introduction: RHIC BES-II

- RHIC beam energy scan Phase II (BES-II): 2017 2021
 - Specific focus on low $\sqrt{s_{NN}}$
 - Include fixed target (FXT) mode to reach lower energies, increase $\mu_{\rm B}$ range from ~400 MeV to ~700 MeV
 - High statistics data
 - Improve systematics
 - Detector upgrade: iTPC, EPD, eTOF
 - Enhances the capability of various measurements with excellent precision

Introduction: hypernuclei in HI collisions

Production mechanism of hypernuclei is still not well understood.

Hypernuclei formation process in relativistic heavy-ion (HI) collisions

can be studied through measurements related to spectra and collective flow.

- Hypernuclei measurements are scarce in HI collision experiments
- At low beam energies, hypernuclei production is expected to be enhanced due to high baryon density

RHIC BES-II offers great opportunity for hypernuclei measurements.

B. Dönigus, Eur. Phys. J. A (2020) 56:280 A. Andronic et al. PLB (2011) 697:203–207

³H reconstruction

- Reconstruction channel: ${}^3_{\Lambda} H \! \to {}^3 He + \pi^-$
- Particle identification from energy loss measurement using TPC
- KF particle package is used for signal reconstruction

XY. Ju et al. Nucl.Sci.Tech. 34 (2023) 10, 158

 $m_{^3\text{He}\,\pi^-}$ (GeV/c²)

$^3_{\Lambda}H$ rapidity and p_T spectra

p_T [GeV/c]

Measurements cover 11 different energies

Collider: 7.7, 11.5, 14.6, 19.6, 27 GeV Fixed Target: 3.0, 3.2, 3.5, 3.9, 4.5, 5.2 GeV

Energy dependence of $^3_\Lambda H$ production

- Yields increase strongly from $\sqrt{s_{NN}} =$ 27 GeV to ~4 GeV
- Peak at 3-4 GeV
- Hadronic transport + coalescence models qualitatively describe the data
- Thermal model overestimates the data

First energy dependence of $^3_\Lambda H$ production yields in the high-baryon-density region

STAR, PRL 128 (2022) 202301 ALICE, PLB 754 (2016) 360 T. Reichert, et al, PRC 107 (2023) 014912

Centrality dependence of $^3_\Lambda H$ production

 Similar trend in central (0-10%) and mid-central (10-40%) collisions

STAR, PRL 128 (2022) 202301 ALICE, PLB 754 (2016) 360

Centrality dependence of $^3_\Lambda H$ production

- Suppression of mid-central/central $^3_\Lambda H$ yield ratio w.r.t N_{part} , seems more apparent below $\sqrt{s_{NN}}$ = 7.7 GeV
- $^3_\Lambda H$ yield ratio tends to increase more steeply than proton, Λ , triton at low energies

Suppression of $^3_\Lambda H$ production in mid-central collisions at low energies compared to central collisions

Nuclei-to-Hadron ratios

STAR, PRL 130 (2023) 202301 STAR, arXiv: 2311.11020 T. Reichert, et al, PRC 107 (2023) 014912

- Thermal model, assuming that chemical freeze-out of light/ hypernuclei happens at same time with hadrons, overestimates ³/_ΛH/Λ by a factor of ~2, as well as t/p
- In thermal model, particle yield ratio is independent of volume. $^3_\Lambda H/\Lambda$ yield ratio is dependent of strangeness correlation length

Suggest $^3_\Lambda H$ and t yields are not in equilibrium and fixed at chemical freeze-out simultaneously with other hadrons

Energy dependence of S₃

- A prominent enhancement of S_{3} was proposed as a probe for deconfinement
- Data shows a mild increasing trend from $\sqrt{s_{NN}}$ = 3.0 GeV to 2.76 TeV
- For coalescence(UrQMD) models, the energy dependence is sensitive to the source radius (Δr)
 - Due to the difficulty in forming $^3_\Lambda H$ of large radius in small systems
- Thermal-FIST, which includes **feed-down** from unstable nuclei to stable p, ${}^{3}\text{He}$, describes the S_{3} data better
 - Possible feed-down should be accounted

STAR, Science 328 (2010) 58 STAR, arXiv: 2310.12674 ALICE, PLB 754 (2016) 360 E864, PRC 70 (2004) 024902

- A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI))
- S. Zhang, PLB 684 (2010) 224 (Coal.+AMPT)
- T. Reichert, et al, PRC 107 (2023) 014912 (UrQMD, Thermal-FIST)

Energy dependence of $^3_{\Lambda} H \left< p_T \right>$

- Similar $\langle p_T \rangle$ for $^3_{\Lambda}H$ and t
 - Blast-wave fit using measured kinetic freeze-out parameters from light hadrons (π , K, p) **overestimates** both $^3_\Lambda H$ and t

 $^3_\Lambda H$ and t do not follow same collective expansion as light hadrons. Can be interpreted as $^3_\Lambda H$ and t decoupling at different times compared to light hadrons

- Different trend for $\sqrt{s_{NN}}$ = 3-4.5 GeV and $\sqrt{s_{NN}}$ = 7.7-27 GeV
 - Suggest different expansion dynamics?

Summary

- $^3_\Lambda H$ yields and $^3_\Lambda H/\Lambda$ ratio in 0-10% collisions overestimated by thermal model, assuming chemical freeze-out of light/hypernuclei happens at same time with hadrons, by a factor of \sim 2
- $^3_\Lambda H \left< p_T \right>$ overestimated by Blast-wave fit parameterization from light hadrons
 - $^3_\Lambda H$ are likely formed at or decouples from the system at a different time compared to the light hadrons
- Suppression of $^3_\Lambda H$ in 10-40% collisions at low collisions energies observed
- Energy dependence of S_3 suggests feed-down from unstable nuclei

Outlook

- Huge datasets enable precision hypernuclei measurements
 - Run 21, Au+Au 3 GeV, ~2 billion events
 - Run 18, Isobar 200 GeV, ~6 billion events See talk by Dongsheng Li, 05/06/24, 11:40AM
 - Run 23-25, Au+Au 200 GeV, ~18 billion events
- Opportunities for heavier hypernuclei: ${}^4_\Lambda H$, ${}^4_\Lambda He$, ${}^5_\Lambda He$, ${}^6_\Lambda H$, ${}^A_{\Lambda\Lambda} H$, ${}^A_{\Lambda\Lambda} He$

See talks by Junyi Han, 04/06/24, 2:40PM
Chenlu Hu, 05/06/24, 9:10AM
Yuanjing Ji, 06/06/24, 11:00AM

Outlook

- Huge datasets enable precision hypernuclei measurements
 - Run 21, Au+Au 3 GeV, ~2 billion events
 - Run 18, Isobar 200 GeV, ~6 billion events See talk by Dongsheng Li, 05/06/24, 11:40AM
 - Run 23-25, Au+Au 200 GeV, ~18 billion events
- Opportunities for heavier hypernuclei: ${}^4_\Lambda H$, ${}^4_\Lambda He$, ${}^5_\Lambda He$, ${}^6_\Lambda H$, ${}^A_{\Lambda\Lambda} H$, ${}^A_{\Lambda\Lambda} He$

See talks by Junyi Han, 04/06/24, 2:40PM

Chenlu Hu, 05/06/24, 9:10AM

Yuanjing Ji, 06/06/24, 11:00AM