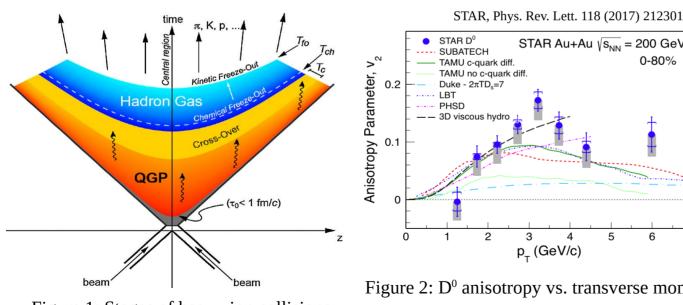


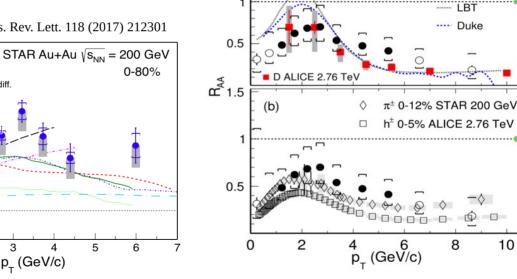
Heavy-flavor femtoscopy in Au+Au collisions @ $\sqrt{s_{NN}} = 200 \text{ GeV}$ at STAR

Priyanka Roy Chowdhury (for the *STAR Collaboration*)

Warsaw University of Technology, Poland

The 21st International Conference on Strangeness in Quark Matter 3 - 7 June 2024, Strasbourg, France


Supported in party by



Motivation – c/c interaction with QGP

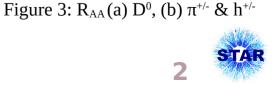
- Heavy quarks (c and b) are produced early in collisions \rightarrow useful to probe all stages of heavy-ion collisions
- Significant D^0 elliptic flow and suppression of D^0 meson at high p_T are observed in heavy-ion reactions at RHIC →
- Strong interaction of charm quarks with the quark-gluon plasma and their thermalization
- → New observables to constrain different models and understand production mechanism

1.5

Figure 2: D⁰ anisotropy vs. transverse momentum

5

Figure 1: Stages of heavy-ion collisions


Priyanka Roy Chowdhury

Strangeness in Quark Matter, June 4, 2024

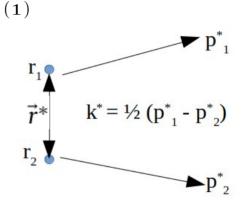
STAR, Phys. Rev. C 99 (2019) 34908

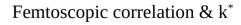
I B

Au+Au \s_{NN} = 200 GeV 0-10%

8

10


Femtoscopic correlation


- Femtoscopic correlations are observed between pair of particles with low relative momentum
- Correlations are measured as a function of the reduced momentum difference (k*) of the pair of particles in rest frame

$$C(\vec{k}^*) = \int S(\vec{r}^*) \, \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 \mathrm{d}^3 r^*,$$

where, $S(\vec{r}^*) \rightarrow$ source emission function $\vec{r}^* \rightarrow$ relative separation vector $\Psi(\vec{k}^*, \vec{r}^*) \rightarrow$ pair wave function

- ➤ Femtoscopic Correlation ► QS + FSI
 - Quantum Statistics [QS]: Bose-Einstein / Fermi-Dirac
 - Final-State-Interaction [FSI]: Strong & Coulomb interaction
 - ➢ Only strong interaction contributes to D⁰/D¯⁰-h[±] femtoscopy

Femtoscopy and interaction parameters

The Lednicky–Lyuboshitz analytical model connects the correlation function with final-state strong interaction parameters

$$C(k^{*}) = 1 + \sum_{s} \rho_{s} \left[\frac{1}{2} \left|\frac{f^{s}(k^{*})}{r_{0}}\right|^{2} \left(1 - \frac{d_{0}^{s}}{2\sqrt{\pi}r_{0}}\right) + \frac{2\Re(f^{s})(k^{*})}{\sqrt{2}r_{0}}F_{1}(Qr_{0}) - \frac{\Im(f^{s}k^{*})}{r_{0}}F_{2}(Qr_{0})\right]$$
(2)

where , $f^{s}(k^{*})$ is the scattering amplitude for singlet (s = 0) or triplet (s = 1) state

 ρ_s is fraction of pairs with a given spin s ($\rho_0 = \frac{1}{4}$ and $\rho_1 = \frac{3}{4}$)

$$Q=2k^*$$
, $F_1(z)=\int_0^z dx e^{x^2-z^2}/z$, $F_2(z)=(1-e^{-z^2})/z$

This model assumes, average separation vector (\vec{r}^*) from eq. (1), follows Gaussian distribution

$$dN^{3}/d^{3}r^{*} e^{-r^{*2}/4r_{0}^{2}}$$
(3)

where, r_0 is the effective radius of the correlated source

Priyanka Roy Chowdhury

Learning outcomes

- Two-particle femtoscopic correlations are sensitive to the interactions in the final state as well as to the extent of the region from which correlated particles are emitted
- Average distance between emission points of correlated pairs (D⁰-hadron) is known as '*length of homogeneity*'
- Femtoscopy may provide additional information about the correlation between charmed mesons and light mesons at the freeze-out

Light meson

D⁰

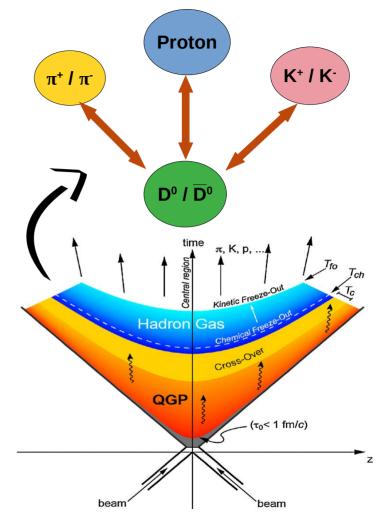
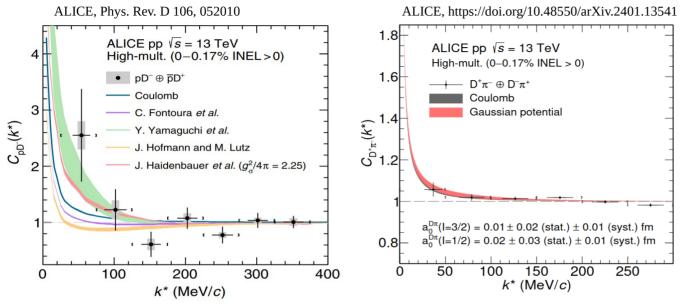


Figure 4: c/c as a probe of QGP medium and final-state interaction


Detector

 p_1

Area of homogeneity

Final State Interaction

- → First studies of D-hadron interactions in pp collisions at $\sqrt{s} = 13$ TeV by the ALICE experiment
- ALICE data for both p-D and D-π pairs are compatible within (1.1 – 1.5)σ with the theory predictions obtained from the hypothesis of Coulomb only interaction

Figure 5: C(k^{*}) for (left) pD and (right) πD pairs and interaction behavior of D[±] at final state

- → Small values of $a_{\pi D}$ (scattering length) → ALICE measurement suggests strong interactions in the hadronic phase of heavy-ion collision are small (parameters are consistent with 0)
- Possiblity to learn something new about nuclear medium or QGP by measuring the source size or length of homogeneity

Priyanka Roy Chowdhury

Freeze-out dynamics

➤ Properties of nuclear medium

Example – source size measured at RHIC with Kaons compatible with model calculations employing hydrodynamics

➤ Local thermal equilibrium

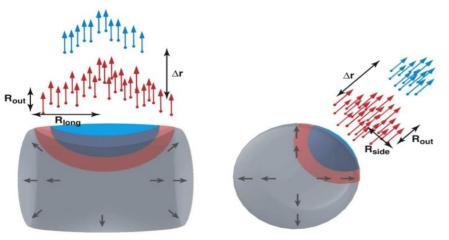


Figure 6: Emission source phase-space

M. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Annu. Rev. Nucl. Part. Sci. 2005.55:357-402

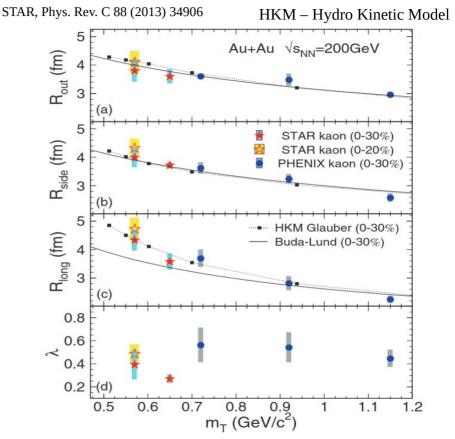
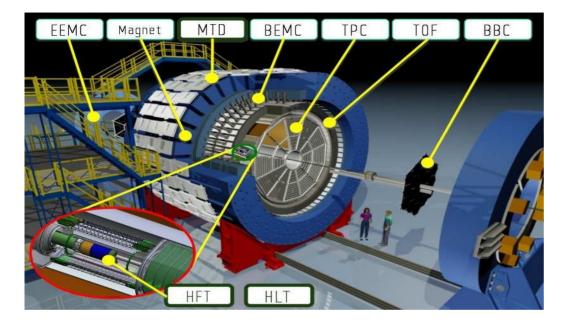
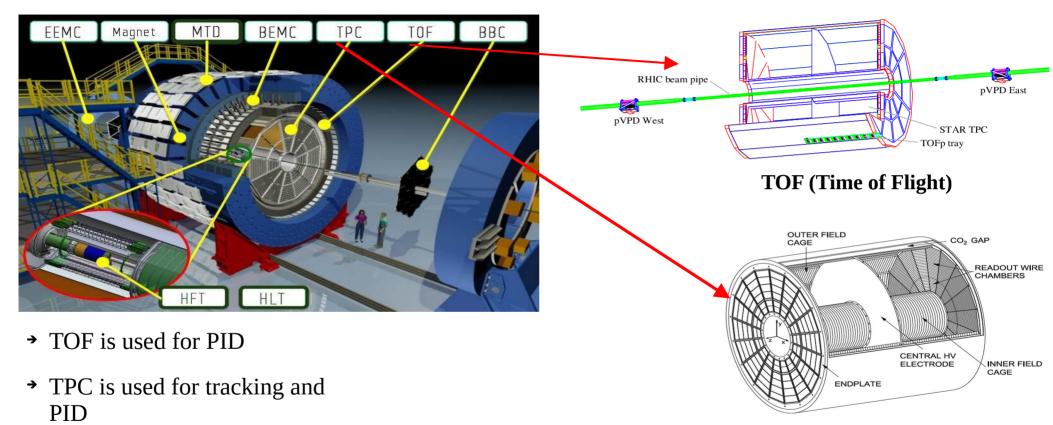



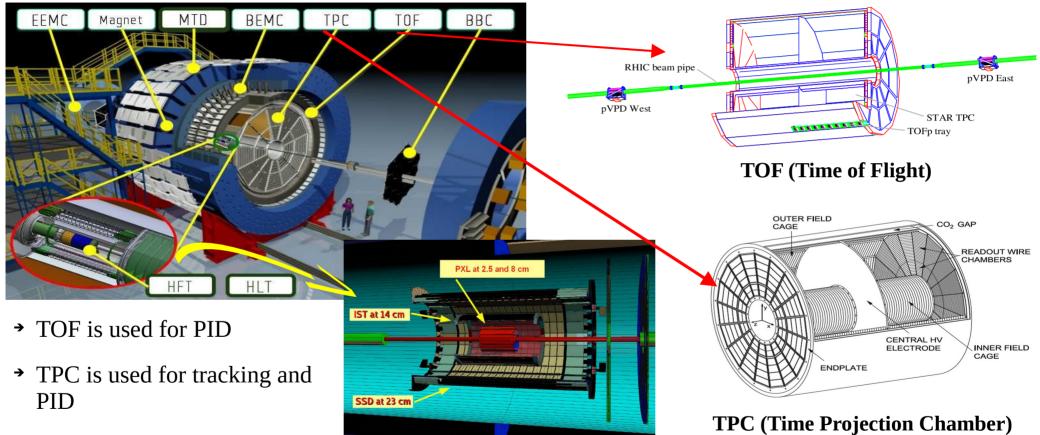
Figure 7: m_T dependence of 3-D source size using Kaon femtoscopy

STAR

Priyanka Roy Chowdhury


STAR (Solenoidal Tracker At RHIC)

Priyanka Roy Chowdhury


STAR (Solenoidal Tracker At RHIC)

TPC (Time Projection Chamber)

STAR (Solenoidal Tracker At RHIC)

HFT is used for D⁰
 recostruction

Priyanka Roy Chowdhury

HFT (Heavy Flavour Tracker)

Particle Identification (PID)

STAR, Phys. Rev. C 99, 034908 (2019)

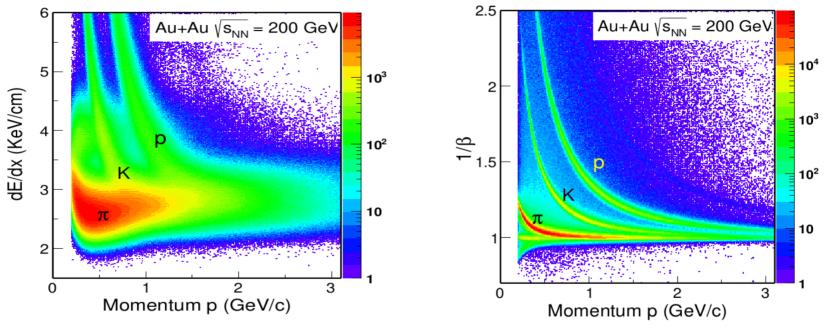
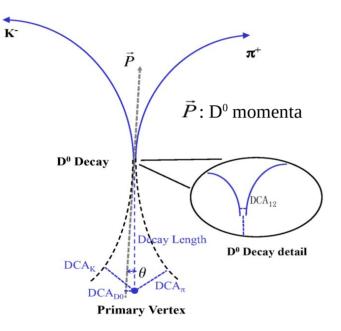


Figure 8: Particle identification using TPC (left) and TOF (right)


- dE/dx bands for π and K overlap around 0.7 GeV/c; K and p bands overlap beyond 1.2 GeV/c
- To distinguish between π , *K* and *p* at higher momenta (> 0.7 GeV/c), TOF information was required

Priyanka Roy Chowdhury

Dataset and D⁰ meson reconstruction

STAR, Phys. Rev. C 99, 034908 (2019)

cτ ≈ 123 μm

 $1.6 < D^0$ mass window $< 2.2 \text{ GeV/c}^2$

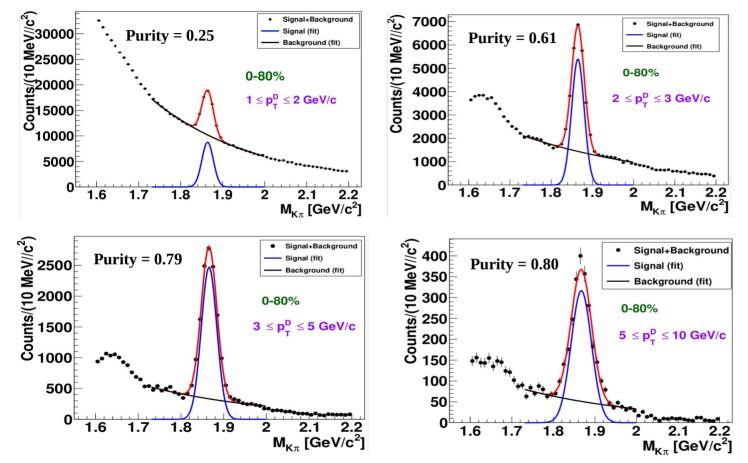
 $D^0 \rightarrow mixture \ of \ D^0 (K^-\pi^+) \ and \ \overline{D}^0 (K^+\pi^-)$

Dataset:

- → Au+Au, 200 GeV, collected in Run 2014
- ➤ Trigger: Minimum bias
- Centrality: 0 80%
- → 490 M good minimum bias events

D⁰ reconstruction:

- Decay length distance between decay vertex and primary vertex (PV)
- → Distance of Closest Approach (DCA) between:


a) K⁻ & π⁺ - DCA₁₂
b) π⁺ & PV - DCA_π
c) K⁻ & PV - DCA_K
d) D⁰ & PV - DCA_{D0}

→ θ - angle between \vec{P} & decay length

Priyanka Roy Chowdhury

D⁰ invariant mass & signal purity

- Unlike-sign (K⁻π⁺) pairs construct 'signal'
- Like-sign (K⁻π⁻ and K⁺π⁺) pairs represent 'background'
- Invariant mass range for D⁰ signal: 1.82 – 1.91 GeV/c²
- D^0 purity:

Signal
(Signal + Background)

- Higher D⁰ signal purity with increasing p_T bin
- → Good S/B ratio for D⁰ signal p_T > 1 GeV/c

.3 STAR

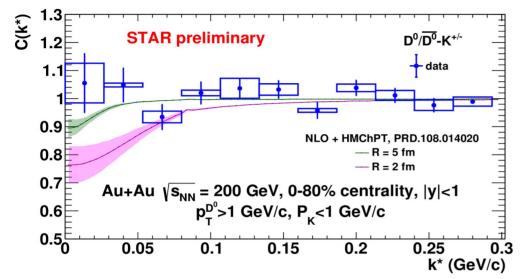
Figure 9: p_T dependence of $K\pi$ invariant mass distribution and D^0 signal purity

Priyanka Roy Chowdhury

Correction of raw correlation function

→ Correlation function C(k^{*}) for D⁰/ \overline{D}^0 - h^{+/-} pairs: $C(\vec{k}^*) = \mathcal{N} \frac{A(\vec{k}^*)}{B(\vec{k}^*)}$.

 $A(\vec{k}^*)$ and $B(\vec{k}^*) \rightarrow k^*$ distribution for correlated and uncorrelated pairs; $\mathcal{N} \rightarrow$ normalization factor


- → Pair-purity corrected correlation function: $C_{\text{measured}}^{\text{corr}}(k^*) = \frac{C_{\text{measured}}(k^*) 1}{\text{PairPurity}} + 1$, (5) where PairPurity = **D**⁰ **purity** * **hadron purity**
- $C_{\text{measured}}(k^*)$ is the raw correlation function calculated using Eq. (4)
- D⁰-hadron pair purity correction is required to remove the contribution from combinatorial background (D⁰ candidates reconstructed from like-sign *K*π pairs within selected mass range)
- → Average D⁰ purity ~ 37%, 1 GeV/c < p_T < 10 GeV/c
- Kaon purity ~ (97 \pm 3 (syst.))%, K_p < 1 GeV/c
- → Pion purity ~ (99.5 ± 0.5 (syst.))%, $\pi_p < 1$ GeV/c
- → Proton purity ~ (99.5 ± 0.5 (syst.))%, $p_p < 1.2 \text{ GeV/c}$

(4)

Priyanka Roy Chowdhury

Results: D^0/\overline{D}^0 - $K^{+/-}$ correlation

- → C(k^{*}) measured for D⁰-K⁺, D⁰-K⁻, \overline{D}^0 -K⁺ and \overline{D}^0 -K⁻ with kaon momentum < 1 GeV/c and D⁰ p_T > 1 GeV/c
- Theory predictions are estimated for D⁰-K⁺ channel using next-to-leading order (NLO) - Heavy Meson Chiral Perturbation Theory (HMChPT) scheme

NLO + HMChPT: M. Albaladejo *et al.*, Phys. Rev. D 108, 014020

Figure 10: C(k^{*}) for D⁰-K pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of C(k^{*}) for D⁰-K⁺ channel using source radii of 5 fm and 2 fm respectively

- STAR data shows no significant correlations, but the data is also consistent with theoretical model predictions with emission source size of 5 fm or larger
- Resonance effect of D_{S0}* (2317)[±] state is NOT visible due to large source size or large experimental uncertainties

Priyanka Roy Chowdhury

Results: $D^0/\overline{D}^0-\pi^{+/-}$ correlation

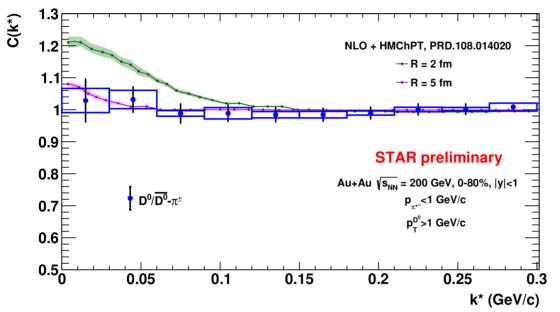


Figure 11: $C(k^*)$ for $D^0-\pi$ pairs with systematic uncertainties (boxes). Green and pink bands are theory predictions of $C(k^*)$ for $D-\pi$ channel using source radii of 2 fm and 5 fm respectively

- → C(k^{*}) calculated for D⁰- π^+ , D⁰- π^- , \overline{D}^0 - π^+ and \overline{D}^0 - π^- with π momentum < 1 GeV/c and D⁰ p_T > 1 GeV/c
- Theory calculations consist of D⁰-π⁺ and D⁺-π⁰ channels using next-toleading order (NLO) - Heavy Meson Chiral Perturbation Theory (HMChPT) scheme

NLO + HMChPT: M. Albaladejo et al., Phys. Rev. D 108, 014020

We do not observe significant correlations, but STAR data is consistent with theoretical model predictions with emission source size of 5 fm or larger

Priyanka Roy Chowdhury

Results: D^0/\overline{D}^0 - $p^{+/-}$ correlation

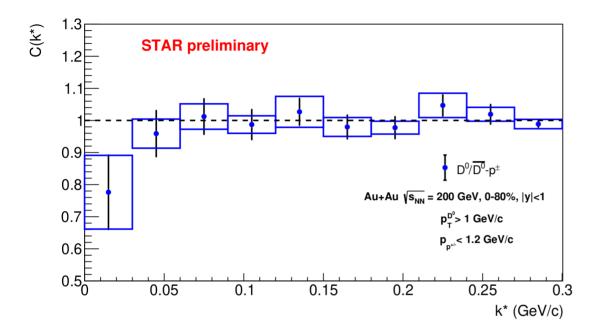


Figure 12: C(k^{*}) for D⁰-p pairs with systematic uncertainties (blue brackets)

- → $C(k^*)$ contains D^0-p^+ , D^0-p^- , \overline{D}^0-p^+ and \overline{D}^0-p^- with proton momentum < 1.2 GeV/c and $D^0 p_T > 1$ GeV/c
- We do not observe significant correlations between D⁰-p pairs
- Suggesting large emission source size

Summary & future plans

- D-meson femtoscopy is applicable to probe the interaction behavior of charmed hadron and the phase space geometry of emission source
- Correlation studies between D⁰ and charged hadrons, provide consistent results with no significant correlation and large emission source size (~ 5 fm)
- Even though current statistical precision is not sufficient to make decisive conclusions but good prospects for improving precision of the measurement; In total 2B events are available from 2014 and 2016 data
- Model study (ex. Lednický–Lyuboshitz) is on the plan to extract interaction parameters and emission source size
- Theoretical inputs are required to connect the observed correlation functions and interaction parameters of charm and light quarks before hadronization

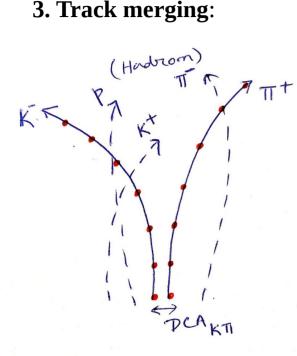
Thank you!

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

 \mathcal{O}

Correction of detector effects

1. Self correlation: Possible correlation between D⁰ candidates and their daughters were removed


Hadron (chosen for pairing with D^0) track id \neq Track id of $D^0(\pi^+K^-)$

2. Track splitting: Track splitting causes an enhancement of pairs at low relative pair momentum k^* . This enhancement is created by a single track reconstructed as two tracks, with similar momenta. Track splitting mostly affects identical particle combinations (here, $\pi_D^0 - \pi$ and $K_D^0 - K$), as one track may leave a hit in a single pad-row. Due to shifts of pad-rows, it can be registered twice. In order to remove split tracks, we applied following condition.

No. of hit points / Max no. of hit points > 0.51

Possible detector effects

Merging of tracks inside TPC

Approach 1:

- → $\delta r(i) < mean TPC distance separation <math>\rightarrow$ 'merged' hits
- → $\delta r(i)$ distance between TPC hits of two tracks
- Pair of tracks with fraction of merged hits > 5% were removed as 'merged tracks'
- The technique was adopted from HBT approach
 Approach 2:
- → $\delta r(i) < threshold \rightarrow `merged' hits$

Approach 3:

- → SE/ME of $\Delta \eta$ vs $\Delta \phi$ distribution \rightarrow no dip around 0 \rightarrow negligible effect of merged tracks
- With variation of merging cuts → Negligible effect on correlation value, no correction applied

Selection criteria

Event cuts

- $|V_z| < 6.0$ cm.
- $|V_z V_z^{VPD}| < 3.0 \text{ cm.}$
- $|V_x| > 1.0e^{-5}$ cm.
- $|V_y| > 1.0e^{-5}$ cm.
- $\sqrt{[(V_x)^2 + (V_y)^2]} \le 2.0$

Track cuts

- $p_{T} > 0.5 \text{ GeV/c}$
- |dca| > 0.0050 cm.
- nHitsFit ≥ 20
- $|\eta| <= 1.0$

PID cuts for π , *K* & *p*

- $|n\sigma_{\pi}| < 3.0$
- $|n\sigma_{K}| < 2.0$
- $|n\sigma_p| < 2.0$
- $|\frac{1}{\beta} \frac{1}{\beta_{\Pi}}| < 0.03$
- $|\frac{1}{\beta} \frac{1}{\beta_{K}}| < 0.03$
- $\left|\frac{1}{\beta} \frac{1}{\beta_p}\right| < 0.03$
- $\frac{nHitsFit}{nHitsFitMax} > 0.51$

Priyanka Roy Chowdhury