Collision Energy Dependence of Hypertriton Production in Au+Au Collisions at RHIC

Yuanjing Ji, Yue Hang Leung, Xiujun Li, Yingjie Zhou

February 10, 2024

Despite extensive measurements on the production yields of light nuclei in heavy-ion collisions, a consensus on their formation mechanism remains elusive. In contrast to normal nuclei, hypernuclei carries strangeness and can offer an additional dimension for such studies. In particular, the hypertriton ${}^{3}_{\Lambda}$ H, a bound state consisting of a proton, neutron and ${}^{5}_{\Lambda}$ hyperon, is the lightest known hypernucleus with a very small binding energy of ${}^{\sim}130$ keV. Currently, published measurements of the ${}^{3}_{\Lambda}$ H yield are scarce and are limited to very low (${}^{\sim}\sqrt{s_{NN}}$ < 5 GeV) or very high collision energies (${}^{>}$ 200 GeV). Precise measurements on the energy dependence of ${}^{3}_{\Lambda}$ H production will give invaluable information on hypernuclei production mechanisms due to its unique intrinsic properties.

10

In this presentation, we will present comprehensive measurements of the collision energy dependence of ${}^3_\Lambda H$ transverse momentum p_T and p_T -integrated yield at mid-rapidity in Au+Au collisions at ten collision energies between 3 and 27 GeV. It is found that thermal model calculations under-predict the ${}^3_\Lambda H$ yield and the ${}^3_\Lambda H/\Lambda$ ratio by a factor of \sim 2 in the reported energy region, while coalescence calculations are closer to data. We will also present the mean p_T of ${}^3_\Lambda H$ as a function of collision energy. The mean p_T of ${}^3_\Lambda H$ is observed to be lower than the Blast-Wave expectation using the same freeze-out parameters from light hadrons. These observations suggest that similar to light nuclei, hypertritons are formed at a later stage than light hadrons possibly through nucleon/hyperon coalescence during these collisions.