Study of particle production of identified hadrons in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV using the STAR detector

Arushi Dhamija (for the STAR Collaboration)
Panjab University, Chandigarh, India

SQM 2022
The 20th International Conference on Strangeness in Quark Matter 13-17 June 2022 Busan, Republic of Korea

Supported in part by:

U.S. DEPARTMENT OF ENERGY
Office of Science
Beam Energy Scan (BES) program at RHIC

- Study of QCD Phase Diagram
- Search of QCD Critical Point
- Search of the first order phase transition

- **BES I (2010-2014)**
 \[\sqrt{s_{NN}} = 62.4, 39, 27, 19.6, 14.5, 11.5, 7.7 \text{ GeV} \]

- **BES II (2017-2021)**
 Collider mode: \[\sqrt{s_{NN}} = 54.4, 27, 19.6, 17.3, 14.6, 11.5, 9.2, 7.7 \text{ GeV} \]
 Fixed target program: \[\sqrt{s_{NN}} = 13.7, 11.5, 9.2, 7.7, 7.2, 6.2, 5.2, 4.5, 3.9, 3.5, 3.2, 3.0 \text{ GeV} \]

The main idea behind the BES Program is to vary the collision energy and look for the signatures of the QCD phase boundary and QCD critical point.
Data set: Au+ Au collisions
Energy: 54.4 GeV
Particles studied: \(\pi^\pm\), \(K^\pm\), \(p\) and \(\bar{p}\)
Detectors for Particle Identification: TPC (Time Projection Chamber) and TOF (Time Of Flight)

The yields from TOF are obtained using the variable mass-square \((m^2)\) within rapidity \(|y| < 0.1\) for \(p_T > 0.7\) GeV/c for pions and kaons, and \(p_T > 0.9\) GeV/c for protons.
Centrality dependence of particle yields and ratios

- Levy function fitting for π^\pm and K^\pm
- Double exponential fit for p and \bar{p}
- p_T integrated yields and particle ratios obtained from fits.
Energy dependence of particle ratios and kinetic freeze-out

Conclusions:
- Presented π^\pm, K^\pm, p and \bar{p} particle production in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV.
- The p_T integrated yields and yield ratios are in trend with other energies.
- The kinetic freezeout temperature (T_{kin}) and $<\beta>$ are anti-correlated, and in trend with other energies.