

Recent J/ ψ results in p+p and Au+Au collisions from STAR

Kaifeng Shen (for the STAR collaboration) State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China

- Motivation and detector
- > J/ ψ suppression in Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV
- > J/ ψ production in jets in p+p collisions at \sqrt{s} = 500 GeV
- Summary

• Other final state effects

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

- The J/ ψ production has been measured in Au+Au collisions at 39, 62.4 and 200 GeV and in Pb+Pb collisions at 17.2 GeV, 2.76 and 5.02 TeV
- No significant energy dependence of nuclear modification factor within uncertainties at $\sqrt{S_{NN}} \le 200 \ GeV$
 - Interplay of color screening, cold nuclear matter effects and regeneration
- ~10x more statistics in 54 GeV compared to 62.4 GeV, and this will help better understand the energy dependence of J/ ψ suppression

J/ ψ production in p+p collisions

Production of the $c\bar{c}$ (large momentum transfer, pQCD)

Evolution of the $c\bar{c}$ pair into J/ ψ (small dynamical scale, non-pQCD)

Difficult for models to account for the hadronization:

- Color Singlet Model
- NRQCD approach(CGC+NRQCD) Long distance matrix elements(LDMEs)
- Improved Color Evaporation Model

J/ ψ production in jets:

- Difference between LHCb measurement and Pythia8 prediction
- What is the case at RHIC energies? Different collision energy, jet energy and kinematic range

The Solenoidal Tracker At RHIC

✓ TPC: Tracking, momentum and energy loss ✓ BEMC: trigger and identification of high- p_T electrons

✓ TOF: Time of flight, particle identification

Kaifeng Shen

J/ψ suppression in Au+Au collisions at $\sqrt{s_{NN}} = 54.4$ GeV

Electron identification

J/ψ raw signal in Au+Au collisions

- J/ ψ raw signal are reconstructed through dielectron channel
- J/ ψ signal shape from embedding with additional momentum smearing
- Residual background described by a straight line
- Raw counts extracted by bin counting in 2.7 < M_{ee} < 3.2 GeV/ c^2
- There is no BSMD information at 54.4 and 200 GeV
 - BSMD detector can further improve electron purity

$\sqrt{s_{NN}}$	39 GeV	54.4 GeV	62.4 GeV	200 GeV	
S/B	0.34	0.06	0.19	0.03	(STAR Collaboration) Phys. Lett. B 771 (2017) 1
Significance	10	24	9	22	

13 - 20

Efficiency and invariant yield

- The pair efficiency is evaluated by folding the single track efficiency
- The acceptance is showed below: $p_{T}^{e} \geq$ 0.2 GeV/c, $|\eta_{e}| \leq$ 1, $|y_{ee}| \leq$ 1,

 $p_T > 0.2 \; GeV/c$ to exclude coherent photon induced production

p+p baseline

 $\begin{array}{c} 10^{5} \\ \text{cross section (up)} \\ 10^{4} \\ 10^{3} \\ 10^{2} \end{array}$

10

1

10⁻⁷

 $\underbrace{\frac{d^2\sigma}{\overleftarrow{c}}}_{-} \operatorname{Inb/(GeV/c)^2}]$

 10^{-2}

 10^{-3}

• For p+p baseline at 39, 54.4, and 62.4 GeV, they are extracted from phenomenological calculations

W. Zha, et al., Phys. Rev. C 93 (2016) 024919.

- \succ Energy interpolation from the existing total J/ ψ cross section measurements
 - Energy evolution of the rapidity distribution
 - \blacktriangleright Energy evolution of J/ ψ transverse momentum distribution

 R_{CP} vs $\langle N_{part} \rangle$

- Peripheral 40 60 % centrality is used as reference
- A suppression is observed in central Au+Au collisions at 54.4 GeV, similar to that at 62.4 and 200 GeV

 R_{AA} vs $\langle N_{part} \rangle$

- Suppression of J/ ψ production is observed in Au + Au collisions at 54.4 GeV with better precision
- No significant energy dependence is observed among 39, 54.4, 62.4 and 200 GeV, as a function of $\langle N_{part} \rangle$

$R_{AA}~\text{vs}~\sqrt{s_{NN}}$

- X. Zhao, R. Rapp, Phys. Rev. C 82 (2010) 064905 (private communication).
- L. Kluberg, Eur. Phys. J. C 43 (2005) 145.
- NA50 Collaboration, Phys. Lett. B 477 (2000) 28.

- R_{AA} as a function of $\sqrt{s_{NN}}$, in central A+A collisions
- 54.4 GeV data follow the trend with improved precision
- No significant energy dependence is observed within uncertainties up to 200 GeV
- Model calculations are consistent with the observed energy dependence

Calculations are for the same system as data points and in 0-20% centrality

- ALICE Collaboration, Phys. Lett. B 734 (2014) 314
- STAR Collaboration, Phys. Lett. B 771 (2017) 13-20
- STAR Collaboration, Phys. Lett. B 797 (2019) 134917
- ALICE Collaboration, Nucl. Phys. A 1005 (2021) 121769

 R_{AA} vs p_T

• R_{AA} increases with increasing p_T for 39, 54.4 and 62.4 GeV

• More suppression towards central collisions

J/ ψ production in jets in p+p collisions at $\sqrt{s} = 500$ GeV

J/ψ and jet reconstruction

- Jet: charged particles + J/ ψ candidates
- Anti- k_{T} , R = 0.4

- Combinatorial background: like-sign method
- Residual background (Drell-Yan, $c\overline{c}$, $b\overline{b}$): exponential function
- Signal: Crystal-Ball function

Fragmentation of J/ψ in jets

- First measurement of J/ ψ production in jets at RHIC
- No significant z dependence is observed within uncertainties
- Compared to Pythia8: less isolated production in data

Major systematic uncertainty sources:

- Pile-up tracks (~8%)
- Min-bias vs J/ ψ PYTHIA events used for response matrix (~5%)
- Tracking efficiency (~12%)

- The fraction of J/ ψ with $p_T > 5$ GeV/c produced in jets with $p_T > 10$ GeV/c is 3.7% \pm 0.3% (stat.) \pm 0.2% (sys.)
- The probability of producing a J/ ψ in charged jet is systematically higher in data than in Pythia8 for the measured kinematics

Summary

Au+Au collisions at $\sqrt{s_{NN}}$ = 54.4 GeV

- Suppression of J/ ψ at 54.4 GeV has been observed
- The suppression is more significant at lower p_T and central collisions
- No significant energy dependence of R_{AA} has been observed in central collisions from 17.2 to 200 GeV

p+p collisions at \sqrt{s} = 500 GeV

- First measurement of J/ψ production in charged jets at RHIC
- No significant z dependence of J/ ψ production in jets is observed, for J/ ψ p_T > 5 GeV/c and jet p_T > 10 GeV/c

Back up

J/ψ signal templates

- The J/ ψ line-shape from embedding and additional momentum smearing matches data well
- The distribution is fitted by Crystal-ball function
- Fix the shape of the Crystal-ball function from simulation when fitting the J/ ψ raw signal from real data

(STAR Collaboration) Phys. Lett. B 771 (2017) 13-20

P18ic; AuAu54_production_2017; St_physics

P10ik; AuAu62_production_2017; St_physics

MB	Events
580001	201179346
580021	1132925521
580011	1040074

MB	Events
270001	6158445
270021	126783290
270011	20692702