

Measurements of Kaon Femtoscopy in Au+Au Collisions at $\sqrt{s_{\rm NN}}$ = 3.0 - 4.5 GeV by the STAR Experiment

Bijun Fan (for the STAR collaboration)

Central China Normal University

Outline

- ***** Introduction
- STAR Experimental Setup
- * Analysis Details
- Results and Discussions
 - 1) Correlation functions
 - 2) Extracted parameters and m_T scaling
- ***** Summary

Introduction - femtoscopy

https://u.osu.edu/vishnu/2014/08/06/sket ch-of-relativistic-heavy-ion-collisions/

- Why study kaons?
 - 1) less contribution from resonances decay
 - 2) smaller rescattering cross-section
- ***** Two-particle correlations are sensitive to:
 - 1) Quantum Statistics (QS);
 - 2) Final State Interactions (FSI)

 If we assume that we know the emission function, the measured correlation function can be used to determine parameters of final state interactions. $\vec{\mathbf{r}}^*$: relative distance of the emitters in the Pair Rest Frame (PRF: in which frame the total momentum of the pair is zero) $\mathbf{S}(\vec{\mathbf{r}}^*)$: emission function q_{inv} : relative invariant momentum in PRF $q_{inv} = \sqrt{|\mathbf{q}|^2 - q_0^2}$, where $\mathbf{q} = \mathbf{p}_1 - \mathbf{p}_2$, $q_0 = E_1 - E_2$ For identical particles, $q_{inv} = 2k^*$

 $\Psi(q_{inv}, \vec{r}^*)$: two-particle wave function

 $\mathcal{N} \frac{N_{same}(q_{inv})}{N_{mixed}(q_{inv})}$: measured correlation function

Bijun Fan

SQM2024, Strasbourg, June 3rd - 7th

Introduction - Parametrization

***** CF including only Quantum Statistical(QS) effect:

 $CF(q_{inv}) = 1 + \lambda e^{-[R_G^2 q_{inv}^2]}$

***** For K⁺-K⁺ and π^+ - π^+ , Bowler-Sinyukov^[1] method to include FSI(Coulomb effect):

Coulomb effect OS effect

 $CF(q_{inv}) = N[(1 - \lambda) + K_{coul}(q_{inv}, R_G)\lambda \left(e^{-[R_G^2 q_{inv}^2]} + 1\right)]$

R_G: source radii parameter; λ : correlation strength; N: normalization factor:

 $F_1(z) = \int_0^z dx \frac{e^{x^2 - z^2}}{z}; F_2(z) = \frac{1 - e^{-z^2}}{z}.$ scattering amplitude: $f(k^*) = \frac{f_0(k^*) + f_1(k^*)}{2}$ $f_{I}(k^{*}) = \frac{\gamma_{I}}{m_{I} - s - i\gamma_{I}k^{*} - i\gamma_{I}'k_{I}'}$, $s = 4(m_{K}^{2} + k^{*2})$ I = 0 or 1 for the f_0 or a_0 ; m_l: mass of the resonance; γ_I and γ'_I : couplings of the resonances to their decay channels; k'_{I} : momentum in the second decay channel.

STAR Experimental Setup

Main sub-detectors for PID

- Time Projection Chamber (TPC): Ionization energy loss (dE/dx)
- Time of Flight (TOF): m^2

BES-II Upgrades

Inner-Time Projection Chamber (iTPC)

Extended eta acceptance and improved tracking and dE/dx resolution

Endcap Time of Flight (eTOF)

Extended PID coverage

Event Plane Detector (EPD)

Improved Event plane resolution

Fixed-Target Experiment

• FXT extends energy reach down to 3 GeV ($\mu_B = 750 \text{ MeV}$)

Bijun Fan

SQM2024, Strasbourg, June 3rd - 7th

Analysis details – PID, reconstruction

- π^+ and K⁺ particles identified by TPC and TOF *
- K_{S}^{0} hadrons reconstructed using invariant mass method: * $K_S^0 \rightarrow \pi^+ \pi^-$

2

0 🖾

0.46

💥 Rotation

0.5

 $M_{\pi^{+}\pi^{-}}$ (GeV/c²)

0.48

0.52

Fit

/(8

10⁶

×

Entries

2

0.1

0.2

TOF Mass² (GeV²/c⁴)

0.3

0.4

Analysis details – acceptance

Analysis details – Purity correction

Analysis details – Pair track correction

Track-splitting effect

Track-merging effect

- * Results in an increase of pairs, amplifying signal of CF

i - the pad-row number Nhits₁ & Nhits₂ - the total number of hits associated to each track in the pair

[1] arXiv:nul-ex/0411036

associated to each track in the pair

- * Results in a reduction of pairs, reducing signal of CF
- **♦** Remove: for Kaon, $|\Delta \theta| > 0.02$ || $|\Delta \phi^*(R = 1.4m)| > 0.05$

for pion, $|\Delta \eta| > 0.04$ || $|\Delta \phi^*(R = 1.4m)| > 0.06$

Results - Correlation functions

- **\diamond** CF of π^+ , K⁺, and K⁰_S with same rapidity range are shown
- Calculations of UrQMD+CRAB consistent with experimental data
- Four different scattering amplitude parameters^[1,2,3,4] for K_S^0 compared, and consistent with each other

[3] Phys. Rev. D 68, 014006 (2003)

[4] Nucl. Phys. B 121, 514–530 (1977)

[5] S.A.Bass et al., Prog.Part.Nucl.Phys. 41 (1998) 225

[6] M.Bleicher et al., J.Phys. G25 (1999) 1859

Results - Correlation functions

• CF of K^+ - K^+ after subtracting Coulomb effect consistent with $K_S^0 - K_S^0$ without strong interaction

Extraction of QS correlation function:

- 1. Fit the measured correlation function
- 2. Extract the parameters and get the FSI function
- 3. Subtract FSI from data points to get the Quantum statistics part contribution

Results - extracted parameters

- ♦ No clear energy dependence for R_G and λ , model consistent with data
- * λ of kaons larger than pions', implying less impact from resonances decay
- Within uncertainties, R_G and λ of charged kaon correlation data consistent with that from neutral kaon

Results – Kaon abundance asymmetry

- ♦ K_S^0 is a mixture of s, \bar{s} quarks, thus can extract ϵ by correlation function
- First measurement of neutral kaon ϵ in heavy ion collisions
- \bullet ϵ of kaon decreases with energy, model reproduce trend of data
 - 1) Associate production dominates at high baryon density
 - 2) Pair production more important at higher energies

Results - m_T - scaling

- \clubsuit R_G of kaons smaller than that of pions
- R_G of kaons do not follow m_T scaling of pions', implying no equilibrium amongst pions and kaons at high baryon density

Summary

- * First measurement of kaon and pion femtoscopy at high baryon density
- Within uncertainties, extracted parameters of charged kaon correlation data are consistent with that from neutral kaon
- * λ of kaons larger than pions', implying less impact from resonances decay

***** For $\sqrt{s_{NN}} = 3.0 - 4.5$ GeV:

1) No clear energy dependence of R_G and λ while ϵ of kaon decreases with energy 2) R_G of kaons do not follow m_T - scaling of pion's, implying no equilibrium amongst pions and kaons