¹ Measurements of Proton Higher Order Cumulants in $\sqrt{s_{_{NN}}} = 3$ GeV Au+Au Collisions ² and Implication of the QCD Critical Point

3

4

5

6

7

8

9 10

11

12

13

14

15

16

Samuel Heppelmann (for the STAR Collaboration)¹

¹University of California, Davis, Davis CA 95616, USA

(Dated: March 12, 2021)

The first RHIC Beam Energy Scan (BES I) was run from 2010-2014 to search for the turnoff signatures of the quark-gluon plasma (QGP), evidence of the first order phase transition, and the possible QCD critical point. In BES I, the higher moment signals, namely $\kappa\sigma^2$, show a nonmonotonic energy dependence in the energy range $\sqrt{s_{NN}} = 7.7$ to 62.4 GeV with a significance of 3.1σ . Motivated by the findings of BES I, the STAR Fixed-Target program extends the energy range to $\sqrt{s_{NN}} = 3.0$ GeV. In this talk, we will discuss a systematic study of cumulants of event-by-event proton multiplicities for the first dedicated fixed-target physics run in $\sqrt{s_{NN}} = 3.0$ GeV Au+Au collisions. The data, 140 million minimum bias events, were recorded with the STAR detector at the Relativistic Heavy Ion Collider facility with a $250\mu m$ target (1% interaction probability). The measurements will be compared to results from the BES I program and the HADES experiment and simulations from the Ultra Relativistic Quantum Molecular Dynamics (UrQMD) model.