Collective flow of light nuclei and hyper-nuclei in Au+Au collisions at $\sqrt{s_{NN}} = 3$, 14.6, 19.6, 27, and 54.4 GeV using the STAR detector

Rishabh Sharma (for the STAR Collaboration)

Indian Institute of Science Education and Research (IISER) Tirupati

Abstract

The production and interaction of light nuclei and hyper-nuclei in high-energy heavy-ion 1 collisions have been a focus of theoretical and experimental interests for a long time. The 2 production of light nuclei in heavy-ion collisions can be explained by the coalescence of produced 3 or transported nucleons. Due to the low binding energies of light nuclei and hyper-nuclei, it 4 is more likely that they are formed at later stages of the evolution of the fireball. Therefore, 5 studying the collective flow of light nuclei and hyper-nuclei in the heavy-ion collisions can 6 provide insights into their production mechanism. Further, the study of the collective flow of 7 hyper-nuclei will shed light on the hyperon-nucleon (YN) interaction in dense nuclear medium. 8 In this talk, we will present the transverse momentum (p_T) and centrality dependence of el-9 liptic flow (v_2) of d, t, and ³He and their antiparticles in Au+Au collisions at $\sqrt{s_{NN}} = 14.6, 19.6,$ 10 27, and 54.4 GeV. $v_2(p_T)$ of light (anti-)nuclei will be compared with the AMPT+coalescence 11 model. Mass number scaling of $v_2(p_T)$ of light (anti-)nuclei will also be shown. We will also 12 report the first observation of the hyper-nuclei ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H directed flow (v_1) in $\sqrt{s_{NN}} = 3$ 13 GeV mid-central (5-40%) Au+Au collisions in the fixed target mode. 14