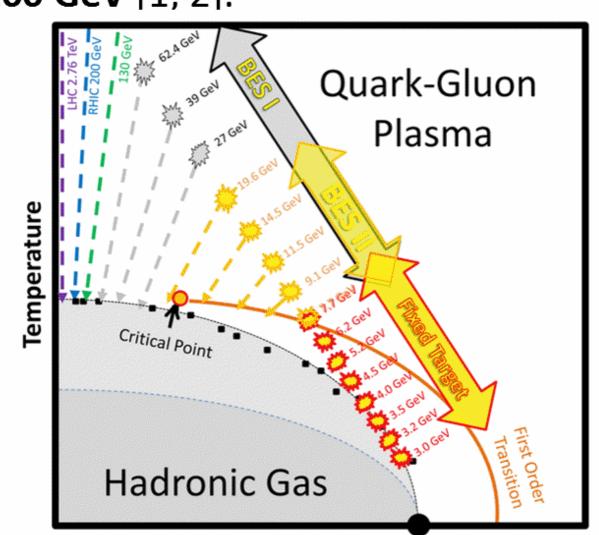


Kaon femtoscopy in STAR

Diana Pawłowska for the STAR Collaboration



Beam Energy Scan program

Beam Energy Scan (BES) – a comprehensive program conducted by all experiments of the RHIC complex, launched in 2010 to study the Quantum Chromodynamics Phase Diagram at different chemical potential (μ_R) and temperature (T) values using collisions of Au ions at collision energies from 7.7 GeV to 200 GeV [1, 2].

The main goals:

- to study the QCD Phase Diagram at different collision energies and to find areas in which QGP signatures are turned off,
- to find a Critical Point between crossover and the first-order phase transition,
- to examine the area between the hadronic and Quark Gluon Plasma matter.

Baryon Chemical Potential μ_{R} Fig. 1 The Quantum Chromodynamics Phase Diagram [3].

Femtoscopy

Femtoscopy - a method to examine the particle emitting source sizes (of the order of 10⁻¹⁵ m) by measurements of relative momentum characteristics [4].

The correlation function (CF) - the ratio of probability of observing two particles with specific momenta p_1 and p_2 at the same place and time to the product of probabilities to find them separately [5]:

$$CF(\vec{p}_1, \vec{p}_2) = \frac{P_2(\vec{p}_1, \vec{p}_2)}{P_1(\vec{p}_1)P_1(\vec{p}_2)}$$

The experimental correlation function:

$$CF(q_{inv}) = \frac{A(q_{inv})}{B(q_{inv})}$$

 $A(q_{inv})$ - the signal distribution,

 $B(q_{inv})$ - the background distribution.

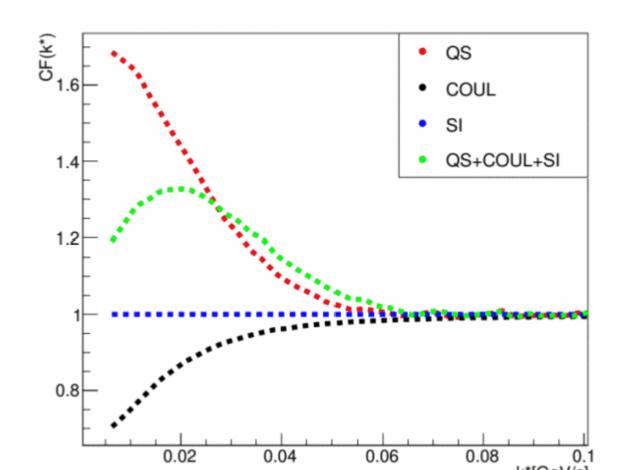


Fig. 2 CF of the like-sign charged kaons from the Therminator model for central Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}.$

Kaon correlation function

The correlation function depends on :

- Quantum statistics (QS)
- Final state interactions (FSI):
 - Coulomb interaction (COUL)
 - Strong interaction (SI)

Like-sign charged kaons -> dominant quantum statistical effects together with Coulomb interaction

Neutral kaons -> absent Coulomb interaction but strong interaction need to be taken into account together with quantum statistical effects

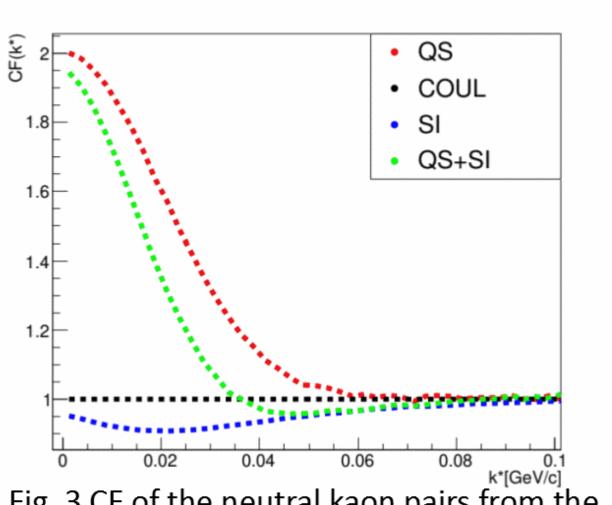
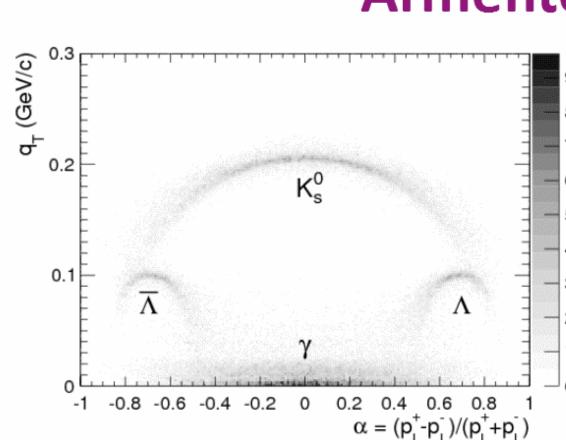


Fig. 3 CF of the neutral kaon pairs from the Therminator model for central Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}.$

Parametrization

Gaussian density distribution (includes only QS effects):

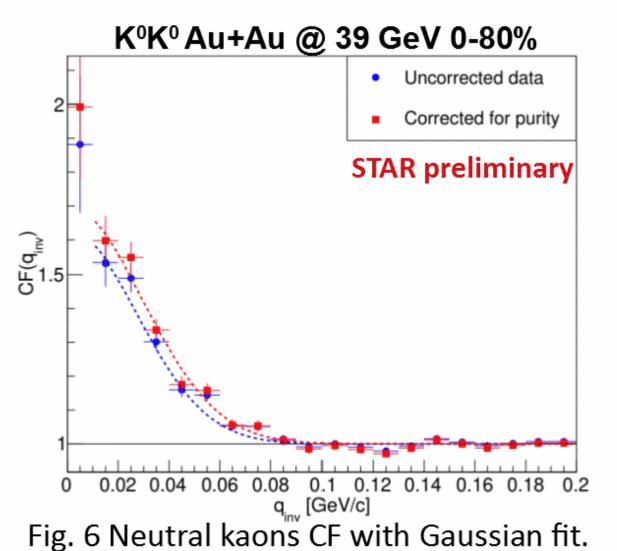

$$CF(q_{inv})=1+\lambda \exp(-R_{inv}q_{inv})$$

λ – the correlation strength

R_{inv} – the size of the particle-emitting source

Lednicky and Lyuboshitz model includes strong FSI was also using to fit the K⁰K⁰ correlation functions [6].

Armenteros-Podolanski plot

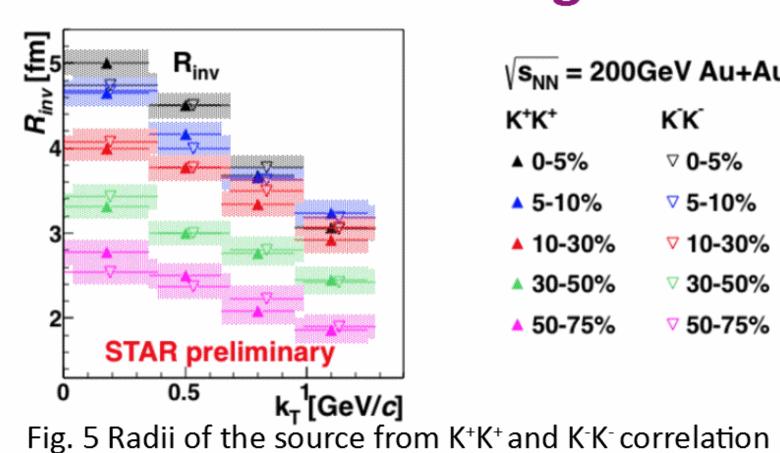

The kinematic properties of the V^o candidates.

$$K_S^0 \rightarrow \pi^+ + \pi^-$$

 π^+ and π^- have the same mass and distributed their momenta are symmetrically on average

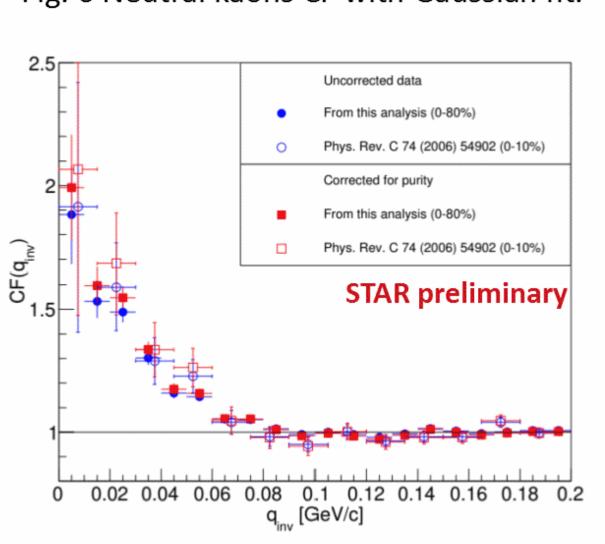
Neutral kaon results

p _T [GeV/c]	0.2-1.5
η	< 0.5
DCA V ^o to the PV [cm]	< 0.3
DCA of daughter [cm]	< 0.3
decay lenght [cm]	> 2
mass range [GeV/c ²]	0.488 - 0.51


Before purity correction:

 $R = 5.08 \pm 0.19 \, fm$ $\lambda = 0.630 \pm 0.051$

After purity correction:


 $R = 4.72 \pm 0.20 \text{ fm}$ $\lambda = 0.701 \pm 0.056$

Charged kaons results

 $\sqrt{s_{NN}} = 200 \text{GeV Au+Au}$ K⁺K⁺ KΚ **▲ 0-5%** ▽ 0-5% **5-10%** ▽ 5-10% **10-30%** ▽ 10-30% **30-50%** 30-50% 50-75% **50-75%**

- k_⊤ and centrality dependence of HBT radii observed
- source sizes increase with the centrality and decrease with the pair transverse momentum

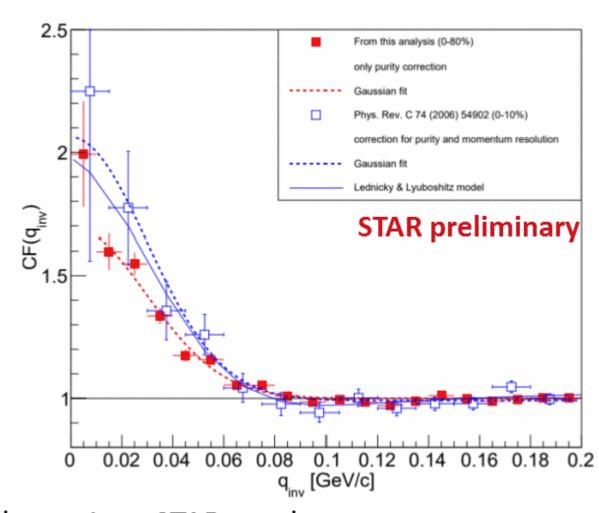


Fig. 7 Comparison with previous STAR result.

References

[1] Odyniec, G., "Future of the Beam Energy Scan program at RHIC," EPJ Web Conf. (2015).

function in different k_r ranges [8].

- [2] Adams, J., et al., "Studying the Phase Diagram of QCD matter at RHIC," (March 2014).
- [3] Meehan, K., "STAR Results from Au+Au Fixed-Target Collisions at at $\sqrt{s_{NN}}$ = 4.5 GeV," Nucl.Phys. A (2017).
- [4] Hanbury Brown, R. and Twiss, R., "A new type of interferometer for use in radio astronomy," Phil. Mag. (1954). [5] Zbroszczyk, H., "Studies of baryon-baryon correlations in relativistic nuclear collisions registered at the STAR
- experiment," (2008). Ph.D thesis. [6] Lednicky, R. and Lyuboshitz, V., "Final-state interaction effect on pairing correlations between particles with
- small relative momenta," Sov.J.Nucl.Phys (1982).
- [7] Aamodt, K., et al., "Strange particle production in protonproton collisions at $\sqrt{s_{_{NN}}}$ = 0.9 TeV with ALICE at the LHC," Eur. Phys. J. C (2011)
- [8] Lidrych, J., "Kaon femtoscopy at the STAR experiment," presentation on Hot Qaurks conference (2016)

Summary

- Kaon femtoscopy a complementary method to pion femtoscopy
- Less affected by resonance decays than pions
- Allows one to learn about the final state interaction
- Source size ~5fm for the most central collisions