Measurements on the production and properties of light hypernuclei at STAR

³ *Yuanjing* Ji^{1*}, for the STAR Collaboration

⁴ ¹Lawrence Berkeley National Laboratory

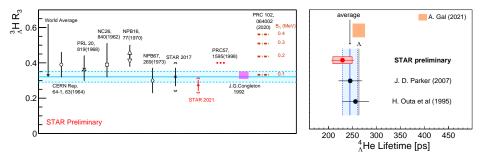
Abstract. The hyperon-nucleon (Y-N) interaction, an important ingredient for 5 the nuclear equation-of-state (EoS), remains poorly constrained. Precise mea-6 surements of hypernucei intrinsic properties and production yields in heavy-ion 7 collisions are crucial for the understanding of their production mechanisms and 8 the strength of the Y-N interaction. Thanks to the high statistics data taken from the STAR BES II program, a series of hypernuclei measurements are carried out 10 at low energies. In these proceedings, we present the kinematic and centrality 11 dependence of light hypernuclei production yields and strangeness population 12 factor (S₃, S₄) in Au+Au collisions at $\sqrt{s_{NN}} = 3$ GeV. We also report the en-13 ergy dependence of ${}^{3}_{A}$ H yields and S₃ at mid-rapidity from 3 to 27 GeV Au+Au 14 collisions. Precise measurements of ${}^{4}_{\Lambda}$ He lifetime and ${}^{3}_{\Lambda}$ H branching ratio are 15 also reported. These results are compared with model calculations and physics 16 implications are discussed. 17

18 1 Introduction

Hypernuclei are bound systems of nucleons and hyperons. They introduce additional degree 19 of freedom in baryon interactions from hyperons. Thus, hypernuclei are regarded as natural 20 laboratory to investigate hyperon-nucleon (Y-N) interactions. Y-N interaction is the impor-21 tant ingredient for understanding the Equation of State (EoS) of neutron stars and the hadronic 22 phase of heavy-ion collisions. Thermal models [1] predict that hypernuclei are abundantly 23 produced in heavy-ion collisions at high baryon density regions. The second phase of the 24 Beam Energy Scan at RHIC, BES-II program, collects high statistical data in Au+Au colli-25 sions with center of mass energies ranging from 3-27 GeV. It maps the QCD phase diagram 26 from 200 MeV baryon chemical potential (μ_B) to around 750 MeV. Thus, BES II program 27 provides us an excellent opportunity to investigate hypernuclei physics in heavy-ion colli-28 sions. 29

30 2 Analysis details

For low energies collisions (3-17 GeV), the collider can be run under the Fixed-target (FXT) mode to significantly enhance the luminosity. Around 2.6×10^8 good events are collected for 3 GeV Au+Au collisions in 2018. The gold target is located at the west side of the STAR detector, while the gold beam comes from the west to east direction. Tracks are reconstructed by Time Projection Chamber (TPC), which covers the pseudo-rapidity range of $-1.5 < \eta <$


^{*}e-mail: yuanjingji@lbl.gov

³⁶ 0 with respect to the target position. Charged particles are identified utilizing the particle ³⁷ energy loss information provided by TPC. In these proceedings, ${}^{3}_{\Lambda}$ H is reconstructed via both ³⁸ ${}^{3}_{\Lambda}$ H $\rightarrow dp\pi^{-}$ and ${}^{3}_{\Lambda}$ H \rightarrow ³He π^{-} channels, and ${}^{4}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ He are reconstructed via ${}^{4}_{\Lambda}$ H \rightarrow ⁴He π^{-} ³⁹ and ${}^{4}_{\Lambda}$ He \rightarrow ³He $p\pi^{-}$. Hypernuclei candidates are reconstructed utilizing KF Particle package ⁴⁰ [2] to enhance significance.

3 Results and discussions

42 3.1 Measurements of hypernuclei lifetimes and branching ratio

⁴³ The ${}^{3}_{\Lambda}$ H branching ratio R_3 is defined as $R_3 = \frac{B.R({}^{3}_{\Lambda}H \rightarrow {}^{3}He\pi^{-})}{B.R({}^{3}_{\Lambda}H \rightarrow dp\pi) + B.R({}^{3}_{\Lambda}H \rightarrow {}^{3}He\pi)}$. A recent model calcu-⁴⁴ lation [3] predicts that ${}^{3}_{\Lambda}$ H R_3 is sensitive to its binding energy, B_{Λ} , which is directly connected ⁴⁵ to *Y-N* interaction strength. The new measurement on ${}^{3}_{\Lambda}$ H R_3 from STAR is highlighted as the ⁴⁶ red solid star in Fig. 1 (left) with the updated world average value $R_3 = 0.32 \pm 0.03$ shown as ⁴⁷ the blue band. Figure 1 (right) is the lifetime of ${}^{4}_{\Lambda}$ He, where the STAR new result is indicated ⁴⁸ by the red circle. The updated world average value is consistent with the calculation based ⁴⁹ on isospin rule [4].

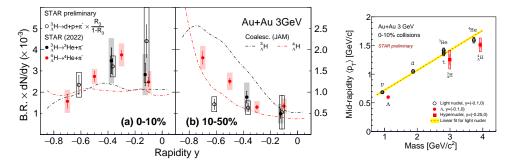


Figure 1. The left plot shows the R_3 of ${}^3_{\Lambda}$ H, and the right plot shows the lifetime of ${}^4_{\Lambda}$ He. The red solid star (left) and circle (right) markers are the STAR new measurements. The updated world average values are indicated as blue bands.

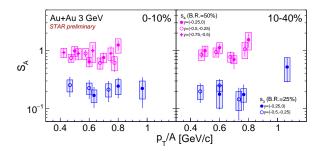
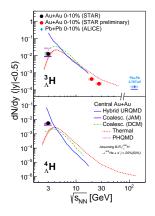
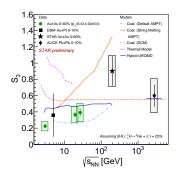

3.2 Production of hypernuclei in heavy-ion collisions

Figure 2 (left) shows the rapidity dependence of ${}^{3}_{\Lambda}$ H and ${}^{4}_{\Lambda}$ H production yields in Au+Au 51 collisions at 3 GeV [5]. Both $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H show different trends in 0-10% and 10-50% central-52 ities. Dashed lines are calculations from the transport model (JAM) with instant coalescence 53 of all hadrons as an afterburner [6]. This simple coalescence model can qualitatively describe 54 the data with tuned coalescence parameters. Figure 2 (right) shows the light nuclei and hy-55 pernuclei average transverse momentum $\langle p_T \rangle$ as a function of particle mass. A liner trend is 56 observed, suggesting the dominance of collective radial motion. Similar phenomena are also 57 observed in light nuclei and hypernuclei directed flow measurements [7]. Those results are 58 qualitatively consistent with that hypernuclei are produced from the coalescence of hyperons 59 and nucleons. 60

To investigate the role of Y-N interaction in heavy-ion collisions, we calculate the strangeness population factor [8] that takes Λ baryon over proton yield ratio as a reference to

Figure 2. The left plot shows the rapidity dependence of ${}^{3}_{\Lambda}$ H (black solid and open circles), ${}^{4}_{\Lambda}$ H (red solid circles) *B.R.* × *dN/dy* as a function of rapidity in 0-10% and 10-50% centralities. ${}^{3}_{\Lambda}$ H yields via ${}^{3}_{\Lambda}$ H $\rightarrow dp\pi^{-}$ channel are scaled by a factor of $R_{3}/(1 - R_{3})$. Dashed lines are JAM calculations coupled with instant coalescence [6]. The right plot shows the average transverse momentum $\langle p_{T} \rangle$ of different particle species as a function of particle mass at mid-rapidity in 3 GeV Au+Au collisions.


Figure 3. S_3 (blue markers) and S_4 (magenta markers) are shown in as a function of p_T/A , where *A* is the mass number. S_3 and S_4 are presented in 3 rapidity bins at 0-10% and 10-40% centralities.


hypernuclei to light nuclei yield ratio:

$$S_A = \frac{{}^{A}_{\Lambda} \mathrm{H}(A \times p_T)}{{}^{A}_{\mathrm{H}}\mathrm{e}(p_T) \times \frac{\Lambda}{p}(p_T)} = \frac{B_A({}^{A}_{\Lambda}\mathrm{H})(p_T)}{B_A({}^{A}\mathrm{He})(p_T)}$$
(1)

As one can see in Eq. 1, S_A has a direct connection with the ratio of coalescence parameters 61 B_A . Figure 3 shows $S_A(A = 3, 4)$ as a function p_T/A in 0-10% and 10-40% centralities, where 62 A is the mass number. Within the current uncertainties, no obvious p_T , rapidity and centrality 63 dependence of S_A are observed at 3 GeV. The results imply that B_A of light nuclei and hyper-64 nuclei might follow similar tendency versus p_T , rapidity and centralities. Suppressed ${}^3_{\Lambda}$ H/ 3 He 65 yield ratios are observed with respect to Λ/p yield ratio in Au+Au collisions at 3 GeV with 66 $S_3 < 1. \frac{4}{\lambda} \text{H}/^4 \text{He}$ yield ratio is comparable to Λ/p yield ratio, which can be explained by the 67 feed-down contributions from the exited state ${}^{4}_{\Lambda}$ H^{*}($J^{+} = 1$). 68

Figure 4 shows the first energy dependence of ${}^{3}_{\Lambda}$ H production yields in high μ_{B} region. 69 An enhanced production of hypernuclei is observed at RHIC BES II energies with respect 70 to LHC energies, which results from the increased baryon density at low energies. The ther-71 mal model [1] predicts the trend while can not quantitatively describe the yields. Again, 72 we investigate the strangeness population factor versus collision energy, which removes the 73 absolute difference between Λ and p yields versus beam energy. Figure 5 (right) shows the 74 energy dependence of S_3 from RHIC to LHC energies. A hint of increasing S_3 from $\sqrt{s_{NN}}$ 75 3 GeV to 2.76 TeV is observed. None of the shown models [1, 8, 9] in Fig. 5 (right) can 76

Figure 4. dN/dy of ${}^{3}_{\Lambda}$ H (top panel) and ${}^{4}_{\Lambda}$ H (bottom panel) at mid-rapidity as a function of the centerof-mass energy. Our results are compared with following model calculations: Hybrid UrQMD [9], JAM [6], DCM [9], Thermal [1], PHQMD[10].

Figure 5. The energy dependence of S_3 is shown. Green circles are the STAR new measurements. Model calculations shown in the plot are from: AMPT [8], DCM [9], Thermal [1], Hybrid UrQMD [9].

describe the S_3 data quantitatively. We are looking forward to further developments from theory communities.

79 4 Summary

In summary, we present a series of measurements on hypernuclei production and intrinsic 80 properties utilizing high statistics data collected during the BES II program at STAR. We 81 report new measurements on ${}^4_{\Lambda}$ He lifetime and ${}^3_{\Lambda}$ H R_3 . The kinematic and centrality depen-82 dence of ${}^{3}_{\Lambda}$ H production yields and S_A in 3 GeV Au+Au collisions are presented. Energy 83 dependence of ${}^{3}_{A}$ H yields and S_{A} in the mid-rapdity from 3-27 GeV are also reported. Our 84 measurements support the coalescence mechanism of hypernuclei production in heavy-ion 85 collisions. Within the uncertainties, no obvious kinematic or centrality dependence of S_3 86 is observed in 3 GeV Au+Au collisions. Hopefully, our measurements will set strong con-87 straints on hypernuclei internal structures and inspire new insights into the strength of Y-N88 interaction. 89

90 References

- ⁹¹ [1] A. Andronic et al., Phys. Lett. B **697**, 203 (2011), 1010.2995
- ⁹² [2] M. Zyzak, Ph.D. thesis, Frankfurt U. (2016)
- ⁹³ [3] F. Hildenbrand, H.W. Hammer, Phys. Rev. C **102**, 064002 (2020), **2007**.10122
- ⁹⁴ [4] A. Gal, EPJ Web Conf. **259**, 08002 (2022), 2108.10179
- ⁹⁵ [5] M. Abdallah et al. (STAR), Phys. Rev. Lett. **128**, 202301 (2022), 2110.09513
- ⁹⁶ [6] H. Liu et al., Phys. Lett. B **805**, 135452 (2020), 1909.09304
- 97 [7] C. Hu (STAR), EPJ Web Conf. 259, 11014 (2022)
- ⁹⁸ [8] S. Zhang et al., Phys. Lett. B **684**, 224 (2010), **0908**.3357
- ⁹⁹ [9] J. Steinheimer et al., Phys. Lett. B **714**, 85 (2012), **1203**.2547
- ¹⁰⁰ [10] S. Gläßel et al., Phys. Rev. C 105, 014908 (2022), 2106.14839