¹ **Multiplicity and Rapidity Dependent Study of (Multi)-** ² **strange Hadrons in** *d***+Au collisions using the STAR detec-**

³ **tor**

Ishu Aggarwal¹^{[∗](#page-0-0)} 4

⁵ ¹Department of Physics, Panjab University, Chandigarh - India

 Abstract. Strangeness enhancement has long been considered as a signature of the quark-gluon plasma formation in heavy-ion collisions. Strangeness en- hancement has also been observed in small systems at the Large Hadron Col- lider (LHC), but the underlying physics is not yet fully understood. This mo- tivates us to study the strange hadron production in small systems at RHIC. ¹¹ We present new measurements of (multi-)strange hadrons (K⁰_S, Λ, Ξ and Ω) in we present hew included by $\frac{d}{\sqrt{s_{NN}}}$ = 200 GeV, collected by STAR in 2016. We report the multiplicity and rapidity dependence of strange hadron transverse momentum ¹⁴ (p_T) spectra, p_T -integrated yields dN/dy, average transverse momentum ($\langle p_T \rangle$), yield ratios of these strange hadrons to pions, nuclear modification factors and 16 rapidity asymmetry for these particles in $d+Au$ collisions.

¹⁷ **1 Introduction**

¹⁸ The production of strange hadrons in high-energy hadronic interactions provides a way to ¹⁹ investigate the properties of quantum chromodynamics (QCD), the theory of strongly in-²⁰ teracting matter. Unlike up (u) & down (d) quarks, strange (s) quarks are not present as $_{21}$ valence quarks in the initial state while they are created during the collisions. Strangeness 22 enhancement in heavy ion collisions with respect to proton-proton $(p+p)$ collisions has been ²³ suggested as a signature of quark-gluon plasma (QGP) formation [1]. But creation of QGP ²⁴ in small systems is still under intense debate.

 Asymmetric small collision systems like proton-nucleus (p–A) and deuteron-nucleus (d–A) can be considered as control experiments where the formation of an extended QGP ₂₇ phase is not expected. These collision systems are used for baseline measurements to study the possible effects of cold nuclear matter and disentangle them from hot dense matter effects present in collisions of heavy ions. The process of generating hadrons can be affected by var- ious factors, including alterations in parton distribution functions within nuclei, the possiblity 31 of parton saturation, multiple scatterings, and radial flow. It is anticipated that the magnitude 32 of these effects may vary with the rapidity of the produced particles. The abundances of strange particles relative to pions in heavy-ion collisions for top RHIC

³⁴ and LHC energies do not show a significant dependence on the initial volume (collision cen- $_{35}$ trality) [2].

³⁶ Nuclear effects can be quantified using various variables such as nuclear modification ³⁷ factor and rapidity asymmetry. Nuclear modification factor is defined as the ratio of the yield

∗ e-mail: iaggarwal@rcf.rhic.bnl.gov

38 of particle in heavy-ion collisions to its yield in $p+p$ collisions, scaled by the number of ³⁹ binary nucleon-nucleon inelastic collisions [3].

$$
R_{AB}(p_T) = \frac{Yield_{AB}}{\langle N_{bin}Yield_{pp}}\tag{1}
$$

- ⁴⁰ where $\langle N_{\text{bin}} \rangle$ is the average number of binary nucleon-nucleon collisions. Comparative study
- ⁴¹ of particle production in forward and backward rapidity regions is done using rapidity asym-
- 42 metry (Y_{Asym}) [4]. Y_{Asym} is defined as

$$
Y_{Asym}(p_T) = \frac{Y_B(p_T)}{Y_F(p_T)}
$$
\n(2)

43 where Y_B and Y_F are particle yields in backward and forward rapidity regions, respectively. ⁴⁴ Y_{Asym} may provide unique information to help determine the relative contributions of various ⁴⁵ physics processes affecting particle production, such as multiple scattering, nuclear shadowing, recombination of thermal partons, and parton saturation.

⁴⁷ **2 Analysis Details**

A successful run of *d*+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV was carried out in 2016 at RHIC. ⁴⁹ A total of approximately 100 million good events have been selected in STAR for the re-⁵⁰ construction of K⁰_s, Λ($\bar{\Lambda}$), Ξ(Ξ̄), Ω($\bar{\Omega}$). K⁰_s, Λ($\bar{\Lambda}$), Ξ(Ξ̄), Ω($\bar{\Omega}$) are weakly decaying particles s₁ and they travel a certain distance before decaying into daughter particles $(K_0^0 \rightarrow \pi^+ + \pi^-$,
 $\Lambda(\bar{\Lambda}) \rightarrow n(\bar{n}) + \pi^-(\pi^+)$ $\Xi^-(\bar{\Xi}^+) \rightarrow \Lambda(\bar{\Lambda}) + \pi^-(\pi^+)$ $\Omega^-(\bar{\Omega}^+) \rightarrow \Lambda(\bar{\Lambda}) + K^-(K^+)$) Identifica- $\Lambda(\bar{\Lambda}) \to p(\bar{p}) + \pi^{-}(\pi^{+}), \Xi^{-}(\bar{\Xi}^{+}) \to \Lambda(\bar{\Lambda}) + \pi^{-}(\pi^{+}), \Omega^{-}(\bar{\Omega}^{+}) \to \Lambda(\bar{\Lambda}) + K^{-}(K^{+}))$. Identification of daughter particles (π K and p) is done via measuring (dE/dx) using Time Projection ⁵³ tion of daughter particles (π, K and p) is done via measuring $\langle dE/dx \rangle$ using Time Projection Chamber (TPC). Chamber (TPC).

⁵⁵ The K⁰_s, Λ($\bar{\Lambda}$), Ξ($\bar{\Xi}$), Ω($\bar{\Omega}$) signals are extracted by reconstructing the invariant mass ⁵⁶ of the decay daughter pairs. The decay topology can be used for their reconstruction and 57 to suppress the background. We have used double Gaussian and second order polynomial ⁵⁸ function to describe the signal and background invariant mass distributions respectively. Raw ⁵⁹ yield is also estimated using functional fitting which is considered in systematic uncertainty. 60 Raw yield is determined by using the bin counting method under the mass window of M_0 ⁶¹ $±3σ$, where M₀ is mass of K⁰_S (or $Λ/Σ/Ω$) and $σ$ is the fitted width. Raw yield for each $±50$ or interval is corrected for branching ratio, acceptence and efficiency to obtain corrected pro ϵ_2 p_T interval is corrected for branching ratio, acceptence and efficiency to obtain corrected p_T 63 spectra. Weak decay feed down correction from Ξ is applied to Λ.

⁶⁴ **3 Results and Discussions**

⁶⁵ In Fig. [1](#page-2-0) (left), integrated yield particle-to-pion ratio for K⁰_S, Λ, Ξ and Ω as a function of ⁶⁶ In Fig. 1 (i.e., integrated yield particle-to-pion ratio for K_S , $K_t \approx$ and sz as a function of meson multiplicity for *d*+Au collisions at $\sqrt{s_{NN}} = 200$ GeV is shown. Smooth transition of these 67 ratios from $p+p$ to heavy ion collisions is observed. Data from different collision systems ⁶⁸ are consistent with each other at similar multiplicities [2] and yields of particles with more ⁶⁹ strangeness content decrease faster as we move from high to low multiplicities.

In Fig. [1](#page-2-0) (right), nuclear modification factors for K_S^0 , Λ and Ξ at mid rapidity (|y| < 0.5)
The distribution is presented and cropin-like enhancement is observed which is stronger 71 for $d+Au$ collision is presented and cronin-like enhancement is observed which is stronger for baryons (Ξ, Λ, p) as compared to mesons (K⁰_S, π).
In Fig. 2 (left) integrated vield and (n_n) as fun

 τ_3 In Fig. [2](#page-2-1) (left), integrated yield and $\langle p_T \rangle$ as function of multiplicity for mid-rapidity in *p*+*p*, *d*+Au, Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV are shown. Integrated yield ⁷⁵ increases as a function of multiplicity and we have also observed that particle production 76 is mainly driven by multiplicity and not by collision system. Hint of an increase in $\langle p_T \rangle$ is ⁷⁷ observed for heavier particles, which supports the picture of radial flow.

Figure 1: Integrated yield particle-to-pion ratio (left) for strange particles (K_S^0 , Λ , Ξ and $Ω$) as a function of multiplicity for $p+p$, $d+Au$, Cu+Cu and Au+Au collisions and Nuclear modification factors (R_{dAu}) (right) for strange particles (K⁰_S, Λ and Ξ) in *d*+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV.

Figure 2: Integrated yield (dN/dy) and mean transverse momentum $\langle p_T \rangle$ (left) for strange particles (K_S^0 , Λ , Ξ and Ω) as a function of multiplicity for $p+p$, $d+Au$, Cu+Cu and Au+Au collisions and rapidity asymmetry (Y_{Asym}) as a function of p_T (right) for strange particles comsions and rapidity asymmetry (Y_{Asym}) as a funct $(K_S^0, \Lambda \text{ and } \Xi)$ in *d*+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$.

⁷⁸ We have also measured the transverse momentum dependence of Y_{Asym} for K⁰_s, Λ and Ξ or the two rapidity intervals (0 < |y| < 0.4, 0.4 < |y| < 0.8) in *d*+Au collision at $\sqrt{s_{NN}} = 200$ GeV.
The values deviate from unity at low p_T (< 3 GeV/c), suggesting the presence of a rapidity ⁸⁰ Y_{Asym} values deviate from unity at low p_T (< 3 GeV/c), suggesting the presence of a rapidity dependence in the nuclear effects. Y_{Asym} is consistent with unity at high p_T , providing a hint dependence in the nuclear effects. Y_{Asym} is consistent with unity at high p_T , providing a hint ^{8[2](#page-2-1)} that nuclear effects become weaker at high p_T as shown in Fig. 2 (right). Y_{Asym} is more 83 prominent for larger rapidity interval and for heavier particles.

84 In Fig. [3,](#page-3-0) integrated yield (dN/dy) and mean transverse momentum $(\langle p_T \rangle)$ are calculated ⁸⁵ for different rapiditiy intervals $(0 < |y| < 0.4, 0.4 < |y| < 0.8)$. For strange particles K_s^0 ,

Figure 3: dN/dy (left) and $\langle p_T \rangle$ (Right) of strange particles (K_s^0 , $\Lambda(\bar{\Lambda})$ and $\Xi(\bar{\Xi})$) as a function of rapidity in *d*+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for multiplicity classes 0-20% and 20-
of rapidity in *d*+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV for multiplicity classes 0-20% and 20-50%.

⁸⁶ Λ ($\bar{\Lambda}$) and Ξ ($\bar{\Xi}$), integrated yield (dN/dy) decreases slightly from negative (Au going side) ⁸⁷ to positive (d going side) rapidity but mean transverse momentum ($\langle p_T \rangle$) is constant in the ⁸⁸ measured rapidity range which suggests a similar radial flow for rapidity ranging from -0.8 < $\frac{8}{3} \times 0.8$. $y < 0.8$.

⁹⁰ **4 Summary**

91 We present new measurements of multiplicity and rapidity dependent study of (multi-)strange \mathbb{E}_{92} hadrons (K⁰₃, Λ($\bar{\Lambda}$), Ξ(Ξ) and Ω($\bar{\Omega}$)) production in *d*+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV with 93 the STAR experiment. p_T -integrated yields of strange and multi-strange particles relative to ⁹⁴ pions increase significantly with multiplicity. Results suggest that strange particle produc-⁹⁵ tion is independent of the collision system and mainly driven by multiplicity. The observed ⁹⁶ enhancement increases with strangeness content rather than with mass or baryon number of ⁹⁷ the hadron. Hint of Cronin-like enhancement is observed for 0-20% centrality for K_S^0 , Λ and 98 Ξ . $Y_{Asym} > 1$ at low p_T , indicating the presence of the nuclear effects. The Y_{Asym} is more prominent for heavier mass and larger rapidity interval. prominent for heavier mass and larger rapidity interval.

¹⁰⁰ **References**

- ¹⁰¹ [1] G. Agakishiev et al. (STAR Collaboration) Phys. Rev. Lett. 108, 072301 (2012).
- ¹⁰² [2] J. Adam et al. (ALICE Collaboration) Nature Phys 13, 535–539 (2017).
- 103 [3] J. Adams et al. (STAR Collaboration) Phys. Lett. B 637, 161-169 (2006).
- ¹⁰⁴ [4] B. I. Abelev et al. (STAR Collaboration) Phys. Rev. C 76, 054903 (2007).
- ¹⁰⁵ [5] B. I. Abelev et al. (STAR Collaboration) Phys. Rev. C 75, 064901 (2007).
- ¹⁰⁶ [6] B. I. Abelev et al. (STAR Collaboration) Phys. Rev. C 79, 034909 (2009).
- ¹⁰⁷ [7] B. I. Abelev et al. (STAR Collaboration) Phys.Lett.B 616, 8-16 (2008).
- ¹⁰⁸ [8] M. M. Aggarwal et al. (STAR Collaboration) Phys. Rev. C 83, 034910 (2011).