Azimuthal anisotropy measurement of multistrange hadrons in Au+Au collision at $\sqrt{s_{NN}} = 27$ and 54.4 GeV at STAR

Prabhupada Dixit Indian Institute of Science Education and Research, Berhampur (For the STAR collaboration)

Strangeness in quark matter, 2021

Supported in part by

Outline

- Introduction
- Motivations
- STAR detectors
- Analysis method
- Results
 - \mathbf{v}_{T} dependence of v_{2} and v_{3}
 - Centrality dependence of v_2 and v_3
 - NCQ scaling
 - $v_2(\phi)/v_2(\overline{p})$ ratio
- Summary

Introduction

What is azimuthal anisotropy?

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} [1 + 2v_{1}\cos(\phi - \Psi_{R}) + 2v_{2}\cos 2(\phi - \Psi_{R}) + ...]$$
$$v_{n} = \langle \cos n(\phi - \Psi_{R}) \rangle$$

Elliptic flow coefficient (v_2) : Initial spatial anisotropy (dominant source) + Event-by-event fluctuations

Motivations

Why v_2 and v_3 are important?

Simultaneous measurements of v_2 and v_3 are important to constrain η/s

Why multi-strange hadrons?

- Early freeze out
- Small hadronic interaction cross section

Chun Shen et al JPG 38 (2011) 124045

Least affected by the hadronic phase of the system

- Uniform Acceptance
- Full Azimuthal Coverage
- Excellent Particle Identification Capability

DATA SETS (Au+Au)

√snn	#events	Yea
27 GeV	~ 300M	20
54.4 GeV	~600M	20

Particles in mid-rapidity $(|\eta| < 1)$ region are used for analysis.

Analysis method

$$v_n = \langle \cos n(\phi - \Psi_R) \rangle$$
 Ψ_R is the azimut

Event plane determinat

$$\psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{ny}}{Q_{nx}} \right)$$

$$Q_n \cos(n\psi_n) = Q_{nx} = \sum_{i=1}^M w_i$$

$$Q_n \sin(n\psi_n) = Q_{ny} = \sum_{i=1}^M w_i$$

Prabhupada Dixit

thal angle of the reaction plane.

• The true reaction plane of the collision can not be determined directly from the experiment. • The event plane is used as a proxy for the reaction plane.

tion	Resolution
,	$\Psi_n \neq \Psi_R$
	$R_n = \langle \cos n(\Psi_n - \Psi_R) \rangle$
$\cos(n\phi_i),$	$R_n(sub) = \sqrt{\langle \cos n(\Psi_A - \Psi_B) \rangle}$
	Ψ_{A} (-1.0 < η < -0.05) and Ψ_{B} (0.05 < 1
$\sin(n\phi_i),$	sub-event planes.

Analysis method

$$v_n = \langle \cos n(\phi - \Psi_R) \rangle$$
 Ψ_R is the azimut

Event plane determination

$$\psi_n = \frac{1}{n} \tan^{-1} \left(\frac{Q_{ny}}{Q_{nx}} \right)$$

$$Q_n \cos(n\psi_n) = Q_{nx} = \sum_{i=1}^M w_i$$

$$Q_n \sin(n\psi_n) = Q_{ny} = \sum_{i=1}^M w_i$$

thal angle of the reaction plane.

• The true reaction plane of the collision can not be determined directly from the experiment. • The event plane is used as a proxy for the reaction plane.

Analysis method

Invariant mass method for v_n

$$v_n^{S+B}(m_{inv}) = \left\langle \cos\left[n(\phi - \psi_n)\right] \right\rangle = v_n^S \frac{S}{S+B}(m_{inv}) + v_n^B \frac{B}{S+A}$$

We assume

$$v_n^B(m_{inv}) = p_0 + p_1 m_{inv}$$

N. Borghini and J.-Y. Ollitrault Phys. Rev. C 70, 064905 (2004)

p_{T} dependence of v_{n}

- Mass ordering observed in the low p_T region ($p_T < 2 \text{ GeV/c}$) : Radial flow
- Baryon to meson separation observed in the region $p_T > 2$ GeV/c : Quark coalescence

Centrality dependence of v₂

Results

Initial spatial anisotropy is the dominant mechanism Prabhupada Dixit

Centrality dependence of v₃

weak centrality dependence

Event-by-event fluctuation in the initial overlap region Prabhupada Dixit

NCQ scaling

- 1. Quark recombination model explains the observed scaling.

D. Molnar and S. A. Voloshin, Phys. Rev. Lett. 91, 092301 (2003).

2. Multi-strange hadrons follow NCQ scaling with other light hadrons — Partonic collectivity in the initial stage.

$v_2(\phi)/v_2(\bar{p})$

Hint of violation of mass ordering at low p_{T}

Tetsufumi Hirano et al Phys. Rev. C 77, 044909 (2008)

Prabhupada Dixit

(less hadronic rescattering)

11

 v_2 (at $\sqrt{s_{NN}} = 27$ and 54.4 GeV) and v_3 (at $\sqrt{s_{NN}} = 54.4$ GeV) of multi-strange hadrons in Au+Au collisions are presented. p_{T} dependence of v_{n}

- Mass ordering in low $p_T \longrightarrow Radial flow$
- Baryon and meson separation at high $p_T \longrightarrow Quark recombination during hadronization$

Centrality dependence of v_n

- Strong centrality dependence of $v_2 \longrightarrow Spatial anisotropy is a dominant source for <math>v_2$
- Weak centrality dependence of $v_3 \longrightarrow Event-by-event fluctuation in the overlap region is the cause for <math>v_3$ NCQ scaling
 - NCQ scaling holds for both v_2 and $v_3 \longrightarrow Signature of partonic collectivity$

 $v_2(\phi)/v_2(\overline{p})$

• Hint of violation of mass ordering at low p_T for p-and ϕ

Summary

Small hadronic interaction cross section and early decoupling of ϕ meson from the system.

Backup

Prabhupada Dixit