

1

From Grid to Cloud, the STAR Experience

Jérôme Lauret S&C project Leader @ RHIC/STAR

Scientific Discovery through Advanced Computing

Focused on "our" usage (standard NP workflow), not a review of Clouds capabilities and services ...

- Introduce STAR & data challenge
- Path from Grid to Cloud, problem analysis
- Cloud and virtualization, usage and tested models pro & cons
- Concluding remarks

Introduction

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

The Soleinoidal Tracker At RHIC (STAR) experiment

- A Nuclear Physics experimental groups part of the Relativistic Heavy Ion Collider (RHIC) program located at BNL
 - Provide unique insight into how quarks and gluons behaved collectively at the very first moment our universe was born.
 - Understand how mass and spin combine into building blocks of nature
 - Help study the fundamental principles of Physics leading to symmetry breaking, help study the nuclear equation of state

Time machine

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

STAR, a data challenge

- A Peta-Scale (data) experiment with lots of computational challenges
 - Year 10 data (experiment ended a month ago) = \sum data for all previous years
- Resource need projections
 - User analysis and real data production are the Highest resource demand
 - Constrained to ONLY 2 pass data reconstruction (anything else needs to be outsourced)
 - Must outsource simulation + ½ of user analysis
 - Uncertainties in estimates?
 - Large data sets bring interesting challenges: moving from a statistically challenged to a systematic driven precision regime
 - Quantification of uncertainties \rightarrow additional simulations?

STAR resource planning document 2009-2015, CSN0474

ATIO

Bytes

Giga

STAR, Grids and ...

- Computing for the RHIC experiments (CHEP 2009)
- Nimbus cloud project saves brainiacs' bacon (TechTarget 2009)
- Number Crunching Made Easy (Newsweek 2009)
- **Clouds make way for STAR to shine (iSGTW Feature 2009)**
- Nimbus ... Meet STAR Production Demands (HPCWire 2009)
- "Last minute" need fulfilled

First interest in Cloud

- - The new Nimbus: first steps in the clouds (iSTGTW 2008) First use of cloud for MC
 - Integrating X-Grid into the HENP distributed computing model (CHEP 2007)
- SunGrid "utility computing" (CHEP 2007)
- OSG SUMS Workspace Demo (CHEP 2007)
- SunGrid and the STAR Experiment (Sun.com 2006)

BROOKHAVEN

From Grids to Cloud

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

Grid, success and limitations

- What are we doing Grid-wise?
 - Data transfer in STAR: bulk transfers using BeStMan/SRM (NERSC/PDSF) since 2002, Transfer to China in 2004 (picoDST), Routine transfer to Prague in 2008 (FDT), "Raw" Grid ftp (KISTI/Korea, ...) @ <u>1 Gb/sec</u> sustained, ...
 - Development and/or hardening of middleware: SRM, BitMap indexing, distributed data model and access, Meta-Scheduler, planner, ...
 - Development of infrastructure for job submission: Efficiency in pre 2006 ~ 65%, 2006-2007 85%, 2008 90%, today @ 97%+ (improvement due to operational support including OSG)
 - Achievements
 - STAR Monte-Carlo productions moved nearly all on Grid: 2006
 - □ In 2010, still only MC & seldom use overall (~ 64k hours/week)
 - Nearly all on dedicated sites (software stack pre-installed)

Problem Analysis

- Why not user analysis or real data productions? Where are the problems for production environments? Why dedicated sites?
- Technical reasons
 - Grids are complex and too heterogeneous for science production environment
 - Troubleshooting is inadequate. Messages cryptic, plethora of OS and environment + lack of interactivity exacerbate the problem
 - Experimental software stacks are complex + Deployment require customized environments
 - STAR case: Developed over more than 10 years, by more than 100 scientists, comprises ~ 2.5 M lines: Rely on the right combination of compiler versions and available libraries + Dynamically load external libraries depending on the task to be performed (system or third parties: ROOT, mysql, libxml, ...)
- Physics and staffing reasons
 - Compiling "on the fly" impossible + Code validation and regression tests are essential
 - Heterogeneous platforms → homogeneous results
 - Cannot be done on all OS flavors (workforce considerations)
 - Science evolves, need to re-validate past data
 - How do I go back to an old library release and run on new OS & compilers ? [not always portable] ...
 10 years down the road

BROOKHAVE

Software and OS complexity way out?

- Burst of resources difficult to acquire
 - Could Grids be dynamic and versatile? Yes if they acquire "truly opportunistic" characteristics
 - Can virtualization help?
 - VM is "canned": Has all what I need to run "inside", could have all the services, etc ...
 - ... and the answer is YES IT CAN!! [in the opportunistic usage dimension at least]

Virtualization displaces the problem

- VM machinery layer needs maintenance for long term support
 - AND/OR "Translator" between VM technologies are needed: Xen, KVM, VMWare, ...

Virtualization and/or Cloud are NOT silver bullet to operational support

Troubleshooting and monitoring remain essential

Clouds have VM machinery at the core – one problem down, dozen more to go ... Lots of interest in Cloud computing ...

Quantifying interest?

BROOKHAVEN

Google trends – based on community search assumed to be proportional to interest

Clouds testing & tasting 🕑 ...

BRUUKHAVEN ational laborator

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

General remarks

- Does the anatomy of Clouds matter?
 - Keywords: SaaS, PaaS, IaaS ...
 - Grid: request job slots Cloud: request VM instances
 - Cloud are economic driven & de-localized
 - Pay as you go, pay for what you need, share the infrastructure, public "utility" service
 - Geographic boundaries less clear
- What do I choose?
 - Many providers, many stacks ...
 - Amazon EC2, SGI Cyclone, IBM CloudBurst, ..., Magellan (DOE), Azure (NSF), ...
 - Many emerging technologies: Nimbus, Eucalyptus, Cloudera, ...
- What did we test?
 - Amazon/EC2 native interface
 - Amazon+Nimbus or Nimbus+Grid resources
 - Clemson Virtual Organization Cluster (VOC) model
 - Condor/VM scheduling (GLOW)
 - Clemson Kestrel model

...

BRO NATION

Models – virtualization boundaries

STAR @ MIT, *Adam Kocoloski Jan Balewski,* Mathew Walker

Purely Web based + ssh login possible. WN "see" the world

Kate Keahey, Jérôme Lauret, Tim Freeman, Levente Hajdu, Lidia Didenko

Gatekeeper + WN form a virtual cluster. WN "see" the world

Miron Livny, Greg Thain, Jan Balewski, Matthew Walker, *Jérôme Lauret*

> Semi-standard GK used to start VMs. Private IP space, need SE + start/stop mechanism for VMs

Sebastien Goasgen, Jérôme Lauret, Michael Fenn, Levente Hajdu

"on-demand" VM subscribe to external RMS. VMs forms an additional network layer

KHAVEN LABORATORY

ATION

Models

Amazon/EC2 native

- Efficiency exceeds 99% in O2 scale; medium instance; bound to ~ 5 MB/sec /node price/performance not always clear – IO rather inadequate for large scale efforts
- Good for simulations and simple workflows: little "I", not that much "O" in IO unlikely suitable for HPC/HTC or large data mining
- Key points, advantages and caveats
 - Amazon has a concept of VM repository: Ownership and trust
 - Amazon AAA rudimentary (lacking?): AA especially used SSH keys or myproxy with image having "proper" gsi components
 - Amazon has a simple and competitive pricing model: \$0.09 / hour in our case A 100 jobs, week long simulation cost ~ \$1,510. A year long CPU @ 100 jobs saturation ~ 79k\$ ATTENTION: S3 cost not advantageous

Nimbus/EC2

- **Efficiency 85% first submission ; 97%+ for one failure re-submission**
 - Drop mostly due to batch system and scalability of PBS may be improved
- Same target simple simulation workflows, not much HPC/HTC
- Key points, advantages and caveats
 - OSG stack inside, GK+WN virtual space looks like "another OSG site"
 - Creation of "clusters" made easier
 - Some contextualization to make at startup (GK not known a-priori, batch "inside" need to know topology)

BROOKHAVEN NATIONAL LABORATOR

Models

Virtual Organization Cluster (VOC) [ACAT 2010]

- Efficiency: 100%? not a single loss, extremely stable, no stress test
- Usability: ultimate convenience and transparency, simulation (transfer is Site/Site limited)
- Key points, advantages and caveats
 - Interface is standard Grid user is agnostic of technology
 - Contextualization remains a site specific overhead
 - VM instance appear/disappear as demand grows/decrease transparent
 - Cluster is shared between native/virtual "on demand" + excellent tracking of demand/provisioning
 - Lesson learn
 - Performance dramatically improved by caching image locally OR directing changes to local disk not possible to control on EC2. Final overhead < 1%; near immediate job startup.
 - VM on top of IaaS IP address space problem
- Condor/VM
 - Efficiency: unclear but ~ 80-85% top
 - 10% of the VM never started, 15% stopped (crashed), 5% net loss for long simulation jobs (VM reboot every 24 hours). Need to be able to extend lease?
 - Usability: was very useful at 500 VMs for full simulation, external transfer mechanism to SE
 - Key points, advantages and caveats
 - Interface remains grid-like After VM is started, no real job get "inside" need supplemental "pull model" (not self-sufficient)
 - As many VMs as one wants: nearly no contextualization (apart from SE) reduce overheads on local staff, condor steering
 - IP space is local no connection to outside
 - Need to handle data transfer separately

BROOKHAVEN

Models

- Clemson/Kestrel
 - Efficiency: unknown
 - Usability: model testing
 - Additional feature in this test start a MySQL service "within" (data production requires one and so are detector response simulations)
 - Additional: 0.5 GB of local space

- Key points:
 - VM may be dynamic
 - IP local BUT Kestrel allows "IM" like communication inside after VM is started, there is a way to start what you want and stop / restart VMs or expand demand
 - Contextualization can be a standard Kestrel deployment (would be true of any standardized model)
 - Mixing nodes from Clemson and CERN in our test (working example)

KHM

ATION

Testing scale & usage growth

Alternate Grids/Cloud usage scaling vs Time

Today, 1,000 jobs on Cloud or Hybrid ("virtualized Grids") is possible (some challenges with stability / scalability)

10 k to 100 k jobs needed for STAR, OSG ~ 13 M jobs at times Promising ... long way to go ...

AR 🕁

Toward summary & conclusions

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

Note of caution ...

Top of hype curve

- Will need "help" beyond faith for steering a constructive direction so (a) survive the fall through the shadow of the valley of death (i.e. disillusion) (b) be truly useful to science communities and meet expectations
- Cloud are here and likely to stay ...
 - Amazon efficiency comparable to Grid efficiency (scalability not-tested)
 - Commercial and private clouds appearing like mushrooms ...Prices are competitive for simple workflows
 - July 13th : EC2 "<u>Cluster Compute</u>" instance now available (1.6 TB store; 23 GB of mem; 1.60\$ / hour; 10 Gb network), rated 146 / top 500 – price <u>assumed to be as low</u> <u>as 0.56 \$ / hour</u> with discount
 - Attractive parts with VM: not a dream, "opportunistic" usage IS possible
 - May help smoothing resource gaps across national laboratories
 - You need a VM + resource providers
 - What is not used "there" can be used (modulo contextualization)

Hype Cycle of Emerging Technologies, 2009

KHAUEN LABORATORY

BRO NATIONA

Points summary ...

Identified issues

- VM repositories (trust and ownership) & caching of VMs (efficiency)
- Authentication, Authorization, Accountability (security model), who authorized a "cluster" to join a VO resource? How to start a service and be approved to "join" a global monitoring system?
- Payment model (economic model now possible?)
- Format of VM and easy portability across sites (standardization?), dynamic and elasticity feature needed (not need to know), contextualization made easy, image (format) evolution
- IO in/out of VM (SE) considering VM de-localization (a "VC" may be truly distributed)
- Standard interface and plug-and-play approach
- Service scalability, truly distributed services
- Grid+VM or Cloud: Application and environment moves with you + (near) infrastructure independent approach
 - **Experiment "hand off" a container** \rightarrow Easy software provisioning of TierX, X>0, ease of use
 - Updates of OS / software stacks will still be driven by Tier0 ... problem of support reduced for facilities
 - Facilities may "carve" a piece of their medium-size clusters
 - Exascale? Maintaining "commodity" hardware cluster ... tomorrow becoming specialized ... should be an obsolete infrastructure approach.
 - New notion of "clusters" can serve vast amount of communities
 - Ex: PDSF @ NERSC overlap with other clusters?
 - Need for dedicated High Performance facilities will remain
 - Ex: 3 Gb/sec to HPSS @ BNL, close to experimental data taking a real need (Amazon or private Clouds unlikely to ever support this) + Cost of storing PB of data

BROOKHAVEN NATIONAL LABORATORY

Thoughts & Conclusions?

- Any new possibilities with "Cloud" or VM?
 - Easy software access, lease and flexible licensing (concurrent licensing, not keyed to node) – worth investigating
 - Opening to bidding and economic model?
 - IaaS + VM + a standard interface \rightarrow YES, can do
 - Best price / fastest delivery may be possible (more motivation for industry?)
- Models & interfaces are numerous
 - Any need for a unification? Grid of grids idea all over again?
 - StratusLab: Enhancing Grid with Cloud computing
 - DeltaCloud: support for all major Grid providers via plug-andplay
- Activities ahead
 - STAR intends to leverage Magellan resources (ANL and/or NERSC) to answer some of the "cluster" and interface questions
 - Other efforts
 - Problem/challenge that spans DOE and NSF (Joint OSG / TeraGrid): ExTENCI project will explore use of our VMs across OSG and TeraGrid sites
 - Further ahead: OSG / VM satellite effort?

BR0

Jérôme LAURET – SciDAC 2010, Chattanooga July 11-15th

STAR 🛧

The end ...

Backup slide

25

Evolution of #line of codes in STAR

Test case: 1 VM / hypervisor, raising the number of CPUs/hypervisors

Use case: VM for multithreaded apps - Xen

Ulrich Schwickerath (CERN), Sebastien Goasguen (Clemson/CERN)

ATIO

- The people: STAR @ MIT Adam Kocoloski, Jan Balewski, Mathew Walker
- Interface standard Web access to EC2
 - General recipe prepare VM
 - ~ 2 hours preparation to be done once
 - Contextualize (EC2 specifics)
 - Ship it to EC2 (slow? 20 mnts, also a one time job)
 - Login & check the VM exists, select STAR image, select machines, select SSH keys, firewall, …
 - Press the "launch" button ... do your physics
 - Pay
- Our test
 - □ A 100 jobs, week long simulation cost ~ \$1,510
 - A year long CPU @ 100 jobs saturation ~ 79k\$
 - EC2+Nimbus
 - 300+ nodes for 10 days in 2008 (nonoptimized) ~ \$5,600

EC2 Prices on February 11, 2010

Standard On-Demand Instances Linux/UNIX Usa			
Small (Default)	\$0.085 per hour		
Large	\$0.34 per hour		
Extra Large	\$0.68 per hour		
High-Memory On-Demand Instances	nces Linux/UNIX Usage		
Double Extra Large	\$1.20 per hour		
Quadruple Extra Large	\$2.40 per hour		
High-CPU On-Demand Instances	Linux/UNIX Usage		
Medium	\$0.17 per hour		
Extra Large	\$0.68 per hour		

STAR users can use a MasterCard, VISA, Amex and run simulations on EC2 today!

... that is what they have done @ MIT Usage context: last minute resource boost

OKHAVE AL LABORATC

Performance?

- Instance & performance scaling tricky
 - CPU
 - 1 starsim would use 40% of the CPU on a small instance (effective price 0.21\$/hour)
 - 1 starsim would take 99% of the CPU on a medium instance (effective price 0.17\$/hour)
 - 2 starsim / medium instance gives 2x 95% of CPU (0.17 \$/ hour) → \$0.09/hour of used CPU
 - IO even more mysterious
 - But 5 MB/sec per VM is enough for STAR
- Our experience
 - Instances survived the run within O2 scale, efficiency > 99%
 - Simplistic interface Web interface
 - □ IO For simulation, enough
 - For real data transfer / 20% of our data production in 2011 requires 1.5 Gbits line for real time transfer

CPU speed test made by Adam Kocoloski

The CPU types are:

- 1 = Opteron 2218 HE @ 2.66GHz
- 2 = Opteron 270 @ 2.00GHz
- 3 = Xeon E5430 @ 2.66GHz
- 4 = Xeon E5345 @ 2.33GHz

type	\$/wall hour	zone	cpu	wall	cpu type
m1.small	\$0.085	any	28.5	65	1
m1.large	\$0.34	us-east-1a	35.5	36	2
m1.large		us-east-1b	15.3	20	3
m1.xlarg	e \$0.68	us-east-1a	28.3	49	1

ATIO

Clemson Virtual Organization Mode

BROOKHAVEN Ational laboratory

- KVM available on all physical nodes
- OSG CE VM running on Cluster head node
- VO-specific image available on NFS
- Physical nodes mount NFS location
- VMs are started directly from image on NFS

KVM -snapshot option allows 1-to-N relationship between image and instances

Watchdog process dynamically sizes virtual cluster

Behavior

BROOKHAVEN

Good tracking of queue demand and slots opening. Good tracking of queue demand decrease and slot closing.

Note: VM are NOT necessarily shutdown between jobs

Activation time average 7 minutes Job length ~ 11 hours Overhead for starting 1%