

XI International Conference on New Frontiers in Physics

Recent heavy-flavor results from STAR

Barbara Trzeciak, for the STAR Collaboration Czech Technical University in Prague

ICNFP 2022 8.9.2022, Kolymbari, Crete

STAR

Why heavy flavor ?

- Interactions with the medium → parton energy loss, flow.
 - → Constraints on energy loss mechanisms: collisional vs radiative process.
 - → Medium thermalization and transport coefficient $D_s(2\pi T)$.

c(b)-quark hadronization

c(b)-quark drag and diffusion in QGP

Initial conditions, nPDFs, ... Hard production

STAR HF | B.Trzeciak | ICNFP 2022

Why quarkonia ?

- QQbar potential and spectral function modified in the QGP medium w.r.t. vacuum.
- Hot nuclear matter effects:
 - → Dissociation due to color screening, regeneration.

Regeneration

- Sequential quarkonium suppression due to different binding energies.
- Cold nuclear matter effects:
 - Modification of PDFs, nuclear absorption, coherent energy loss, co-mover absorption,

STAR detector at RHIC

- TPC momentum and PID (dE/dx)
- TOF PID (1/β)
- BEMC trigger on and identify high p_T electrons
- HFT excellent pointing resolution for secondary vertex reconstruction
- MTD trigger on and identify muons

Open heavy flavor

→ Strong suppression of D⁰ and D^{+/-} at high $p_T \rightarrow$ strong interaction of charm quarks with the medium. → D^{+/-}/D⁰ yield ratio in Au+Au consistent with PYTHIA8.

Charm hadrochemistry

Insight into hadronization mechanism of charm quarks.

STAR, Phys. Rev. Lett. 127 (2021) 092301

- → Enhancement of Λ_c/D^0 and D_s/D^0 ratios compared to PYTHIA.
- → Consistent with models including coalescence hadronization.

Total charm production cross section

- STAR
- → Total charm production cross section per binary collision in Au+Au at $\sqrt{s_{_{NN}}}$ = 200 GeV.
 - Consistent with p+p collisions.

Collision System	Hadron	dσ _{NN} /dy [μb]
Au+Au at 200 GeV Centrality: 10-40% 0 < p _T < 8 GeV/c	D^{0} [1]	$39 \pm 1 \pm 1$
	D^{\pm}	$18 \pm 1 \pm 3^{*}$
	D _s [2]	$15 \pm 2 \pm 4$
	Λ _c [3]	$40 \pm 6 \pm 27^{**}$
	Total	$112 \pm 6 \pm 27$
p+p at 200 GeV [4]	Total	$130 \pm 30 \pm 26$

 D^{o} [1] STAR, Phys. Rev. C 99 (2019) 034908 D_{s} [2] STAR, Phys. Rev. Lett. 127 (2021) 092301 Λ_{c} [3]STAR, Phys. Rev. Lett. 124 (2020) 172301 p+p [4] STAR, Phys. Rev. D 86 (2012) 072013

* Preliminary D^{+/-} results

** Λ_c cross section derived from Λ_c/D^0 yield ratio

Mass dependence of parton energy loss

• Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation thanks to HFT.

- → Clear mass hierarchy of $c \rightarrow e$ and $b \rightarrow e R_{AA}$ observed. Consistent with model predictions.
- ➔ b quarks lose less energy than c quarks.

Energy dependence of HFE v_2

• v_2 vs coll. energy \rightarrow temperature dependence of charm quark diffusion coefficient.

→ Significant non-zero v_2 of c,b → e at 54.4 - 200 GeV.

- At low p_T models underestimate data.
- → HF quarks interact strongly with the medium at 54.4 200 GeV.

D⁰-meson tagged jets

D⁰-jet radial profile: charm quark diffusion in QGP.

→ R_{CP} : strong suppression at low jet p_{T} , hint of increasing trend.

→ Ratio of radial distributions consistent with unity. Potential to go to lower $D^0 p_T$.

TAR

11

Quarkonia

CNM effects on J/ ψ production

- → Low p_T (< 2 GeV/c): significant CNM effects. Consistent with nPDFs and nuclear absorption models.</p>
- → High p_T : R_{pAu} consistent with unity → suppression in AA due to QGP effects.

Energy dependence of J/ ψ R_{AA}

- → R_{AA} increases with p_T below 3 GeV/c at 39 62.4 GeV, less p_T dependence at 200 GeV.
- → No significant colliding energy dependence of the J/ ψ suppression between 39-200 GeV → interplay of dissociation and regeneration effects.

Isobar collisions at 200 GeV

 ${}^{96}_{44}Ru + {}^{96}_{44}Ru$ and ${}^{96}_{40}Zr + {}^{96}_{40}Zr$

- Moderate size collision system, between Au+Au and Cu+Cu.
- Large sample: ~ 4 billion minimum bias events and high-tower trigger events.
- Event Plane Detector: reduction of non-flow effects in v₂ analysis.
- Study dependence of hot nuclear medium effects on medium size and geometry.

$J/\psi R_{AA}$ and v_2 in isobar collisions

STAR

Dissociation vs regeneration effects: system size and geometry dependence.

→ No significant collision system dependence of the J/ ψ suppression at similar N_{part}.

→ Elliptic flow (v₂) consistent with zero for $p_T < 4$ GeV/c at $\sqrt{s_{_{NN}}} = 200$ GeV → small regeneration or/and small charm quark flow.

Suppression of Υ states in Au+Au

50

100

150

200

part

AR

 \rightarrow Sequential suppression of Υ states at RHIC.

 $\mathbf{R}_{\mathbf{AA}}$

- $\rightarrow \Upsilon(1S)$: similar magnitude of suppression at RHIC and LHC.
- $\rightarrow \Upsilon(2S)$: hint of less suppression at RHIC in peripheral collisions.

STAR HF | B.Trzeciak | ICNFP 2022

250 300 350

STAR, arXiv: 2207.06568

400

STAR

CMS

STAR SCMS

J/ ψ production with jet activity in p+p

Constraining J/ψ production mechanism: color singlet vs color octet state.

Lansberg, Physics Reports, 889, 1 (2020)

- → J/ ψ production cross section as a function of jet activity for R = 0.4 and R = 0.6 jets.
- → For the measured kinematics, PYTHIA8 predicts larger fraction of J/ ψ produced in association with jets than that observed in data.

Outlook - 2023 and 25

- High luminosity Au+Au runs at 200 GeV
- ¹ First ψ (2S) measurement in Au+Au at RHIC.
 - → Regeneration contribution and temperature profile of QGP.
- $_2$ Improved J/ ψ v $_2$ measurement with reduced non-flow effects.
 - Regeneration contribution and charm quark thermalization.
- 3 Precision Υ measurements (~30% statistical uncertainty for Y(3S)).
 - → Medium temperature.

GeV/c

ല്

Bun23-25 AuAu@200 GeV 60-80%

(Target 20B MB)

#w(2S) = 305.0

 $\#J/w = 15568.0 \pm 155.2$

- UnlikeSign

- RawSignal

Mee (GeV/c²)

- LikeSian

= 0.02 ± 0.0036

.I/w*BB

STAR

Summary of heavy flavor in STAR

- 1 Strong charm quark interactions with QGP
 - Constrains on diffusion coefficient
- ² b quarks loose less energy than c quarks
 - Mass dependent parton energy loss
- $_3~\Lambda_{\rm c}/{\rm D^0}$ and ${\rm D_s}/{\rm D^0}$ enhancement
 - Importance of charm quark coalescence

Summary of heavy flavor in STAR

- 1 Strong charm quark interactions with QGP
 - Constrains on diffusion coefficient
- ² b quarks loose less energy than c quarks
 - Mass dependent parton energy loss
- $3 \Lambda_c/D^0$ and D_s/D^0 enhancement
 - Importance of charm guark coalescence
- 4 J/ ψ suppression: no significant collision system and energy dependence
 - Interplay of dissociation and regeneration effects
- 5 J/ ψ v₂ consistent with zero in isobar collisions
 - Small regeneration effects

R^{AA} 0'.

04

0.2

Summary of heavy flavor in STAR

- 1 Strong charm quark interactions with QGP
 - Constrains on diffusion coefficient
- ² b quarks loose less energy than c quarks
 - Mass dependent parton energy loss
- $_{3}~\Lambda_{\rm C}/{\rm D^{0}}$ and ${\rm D}_{\rm S}/{\rm D^{0}}$ enhancement
 - Importance of charm quark coalescence
- $_4$ J/ ψ suppression: no significant collision system and energy dependence
 - Interplay of dissociation and regeneration effects
- 5 J/ ψ v₂ consistent with zero in isobar collisions
 - Small regeneration effects
- 6 Sequential Y suppression at RHIC
 - Thermodynamic properties of the medium

This work was supported by grant from The Czech Science Foundation, grant number: GJ20-16256Y

22

STAR HF | B.Trzeciak | ICNFP 2022

Backup

Mass dependence of parton energy loss

STAR

• Heavy-flavor hadron decayed electrons: $c \rightarrow e$ and $b \rightarrow e$ separation thanks to HFT.

- → Bottom-to-charm $R_{CP}(0-20\%/40-80\%)$ and $R_{CP}(0-20\%/20-40\%)$ ratios in p_{T} range 2 4.5 GeV/c reject null hypothesis at 4.2 and 3.3 σ , respectively.
- ➔ b quarks lose less energy than c quarks.

Outlook - 2023 and 25

- High luminosity Au+Au runs at 200 GeV
- ➔ Projected kinematic coverage of the heavy-flavor program.

