Heavy Flavor production in the STAR experiment

Barbara Trzeciak for the STAR Collaboration Czech Technical University in Prague

Outline:

- > Open Heavy Flavor
- Quarkonia
- Prospects

The 30th Winter Workshop on Nuclear Dynamics 6-10 April 2014 Galveston, Texas USA

Open Heavy Flavor

- c and b quarks are produced in initial hard scattering
 - Cross-sections calculable within pQCD
 - Unique probes of QGP properties

- Degree of medium thermalization production and elliptic flow sensitive to dynamics of the medium
- Parton energy loss mechanism

Open Heavy Flavor in STAR

- Non-photonic electrons (NPE)
- *electrons from semi-leptonic HF hadron decays*
 - higher branching ratio
 - easy to trigger
 - indirect access to heavy quark kinematics
 - * contribution from c and b
- Direct reconstruction of open charm
 - direct access to heavy quark kinematics
 - high statistics compete with large combinatorial background w/o good vertex resolution
 - * difficult to trigger

STAR Experiment

Large acceptance: $|\eta| < 1, 0 < \phi < 2\pi$

VPD minimum
 bias trigger

TPC – PID:dE/dx, tracking

TOF – PID: 1/β

EMC – PID: E/p,
 trigger

D^o, D* in p+p and Au+Au 200 GeV

p+p

Au+Au

- Consistency with FONLL upper limit
- Better precision new
 2010+2011 data

FONLL: R. Nelson, R. Vogt, A. D. Frawley, arXiv: 1210.4610

Charm cross section at 200 GeV

 Total charm production follows number-of-binary-collision scaling

D^o in Au+Au 200 GeV

 \checkmark In central collisions strong suppression at high $p_{_{T}}$

D^o in U+U 193 GeV

Higher energy density compared with Au+Au

✓ Similar behavior in U+U and Au+Au collisions

$D^{0} R_{AA}$ in Au+Au 200 GeV

NPE in p+p and Au+Au 200 GeV

p+p

Au+Au

 Consistency with FONLL upper limit

✓ Suppression at high p_T
 comparing to FONLL

NPE in Au+Au 200 GeV

- ✓ Strong suppression at high p_T
 - Similar to D⁰ mesons and light hadrons suppression NPE includes both c and b
- ✓ Finite v_2 at low and intermediate p_T
 - Suggests strong charm-medium interaction, but more precise measurements of D⁰ v₂ are needed
 - Increase of v₂ with p_τ can be due to jet-like correlations or path length of energy loss

STARNPE in Au+Au 200 GeV – model comparison

- Gluon radiation scenario alone fails to describe large NPE suppression
- No model can successfully explain the suppression and v₂ simultaneously

NPE in Au+Au 62.4 GeV

Quarkonia at RHIC - Motivation

 $\underline{Charmonia: \mathcal{J}/\psi, \psi', \chi_c} \qquad \underline{Bottomonia: \Upsilon(1S), \Upsilon(2S), \Upsilon(3S), \chi_b} \\ \underline{\mathcal{J}/\psi \rightarrow e^+e^- (BR 5.9\%)} \qquad \underline{\Upsilon \rightarrow e^+e^- (BR 2.4\%)}$

- Quarkonia suppression in QGP in heavy-ion collisions due to color screening
- ✓ Suppression of different states is determinate by $T_{\rm C}$ and their binding energy QGP thermometer

But there are more complications:

Still unknown *production mechanism* in elementary collisions
 measure p_T spectra and polarization

Feed-down:

> <u>prompt J/</u> ψ production - **direct J/** ψ (~60%), feed down from ψ ' (~10%) and χ_c (~30%) decays

non-prompt - **B-mesons** feed-down (10-25% at 4-12 GeV/c, STAR, Phys. Lett. B722 (2013) 55)

Cold Nuclear Matter (CNM) effects - nuclear shadowing, Cronin effect, nuclear absorption, ...

J/ψ in p+p 200 GeV

It's challenging to describe both J/ ψ p_T spectrum and polarization

J/ ψ p_T spectra in Au+Au 200 GeV

J/ ψ R_{AA} in Au+Au 200 GeV

- Suppression increases
 with collision centrality
- High-p_T R_{AA} is systematically higher
- High-p_T J/ψ suppressed in central collisions
 - QGP effects ?

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563

J/ ψ R_{AA} in Au+Au 200 GeV

- Suppression increases with collision centrality
- High-p_T R_{AA} is systematically higher
- ✓ High-p_T J/ψ suppressed in central collisions
 - QGP effects ?

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563

 Both models – color screening + statistical regeneration - describe the data well at low p_T

J/ ψ R_{AA} in Au+Au 200 GeV

- Suppression increases with collision centrality
- High-p_T R_{AA} is systematically higher
- ✓ High-p_T J/ψ suppressed in central collisions
 - QGP effects ?

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563

→ At high p_T Liu et al. model describes the data well, while Zhao et. al model underpredicts the R_{AA}

Energy dependence of J/ ψ R_{AA}

- Suppression of J/ ψ at 62.4 and 39 GeV no strong energy dependence of J/ ψ R_{AA}
- Data agrees with the prediction of the two-component model
 - p+p reference for 62.4 and 39 GeV data from Color Evaporation Model (CEM) large theoretical uncertainties

J/ ψ v₂ in Au+Au 200 GeV

✓ J/ψ v₂ is consistent with zero at p_T > 2 GeV/c
 → disfavors the case that J/ψ with p_T > 2 GeV/c are produced dominantly by coalescence from thermalized (anti-)charm quarks

Heavy Flavor Tracker (HFT)

Precision open heavy flavors v_2 and R_{AA} measurements

Non-prompt $J/\psi: B \rightarrow J/\psi + X$

Multi-gap Resistive Plate Chamber (MRPC) - gas detector Acceptance: 45% at $|\eta| < 0.5$ Long-MRPCs Electronics same as in STAR TOF

Muon Telescope Detector (MTD)

- No γ conversion
- Much less Dalitz decay contribution
 - Less affected by radiative looses in the materials

- Excellent mass resolution
- Trigger capability for low and high p⊤ J/ψ in central Au+Au

- ${\scriptstyle \succ}$ NPE and D^{\scriptscriptstyle 0} suppression at high $p_{_{\rm T}}$ Au+Au 200 GeV
- No NPE suppression at 62.4 GeV Au+Au collisions
- > $D^0 R_{AA}$ similar behavior in Au+Au and U+U collisions

- > High p_T J/ ψ suppressed in central Au+Au 200 GeV
- No strong energy dependence of J/ψ suppression in Au+Au 200, 62.4, 39 GeV

> HFT and MTD since 2014

Thank you !

Backup

D^o, D* in p+p 200 and 500 GeV

Consistency with FONLL upper limit

Open Heavy Flavor flow Au+Au 200 GeV

How to disentangle color screening vs CNM effect vs recombination

- Energy dependence of the J/ψ production - varying relative contributions
- High-p_T J/ψ almost not affected by CNM effects and recombination

STAR high-p⁺ signal:

Measure J/ ψ p_T spectra, R_{AA}, polarization, elliptic flow ...

J/ ψ -hadron correlations in p+p 200 GeV

Phys. Lett. B 722 (2013) 55

B \rightarrow **J**/ ψ feed-down Model based extraction using PYTHIA

- Extracted from near side J/ ψ -h correlation
- B-hadron feed-down contribution of 10-25% at 4-12 GeV/c
- Result consistent with FONLL+CEM calculation

STAP/ψ in Au+Au 200 GeV - comparison to models

• prediction for two J/ ψ decoupling

temperatures: T = 120 MeV and T = 165 MeV

Viscous hydrodynamics

Fails to describe the low- $p_T J/\psi$ yield (< 2 GeV/c) and J/ψ elliptic flow at $p_T > 2$ GeV/c

Liu et. al.

J/ψ suppression due to color screening + statistical regeneration + B-meson feed-down + formation-time effects

Describes the p_T spectrum

Hydro: U. W. Heinz and C. Shen (2011), private communication Liu et. all: Y. Liu,Z. Qu, N. Xu, and P. Zhuang, Phys. Lett. B 678 (2009) 72 STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : arxiv:1310.3563

STAR J/ψ R_{AA} vs p_T in Au+Au collisions at 200 GeV

Y.Liu et al., Phys. Lett. B, 678 (2009) 72 Zhao, Rapp, Phys. Rev. C 82 (2010) 064905 PHENIX: Phys. Rev. Lett. 98 (2007) 232301

STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : arxiv:1310.3563

- J/ψ suppression decreases with increasing p_T across the centrality range
- Strong suppression at low p_⊤ (< 3 GeV/c) for all centralities
- At high-p_⊤:
 - suppression for central collisions
 - R_{AA} consistent with unity in (semi-)peripheral collisions
- Data agrees with theoretical calculations
 - color screening + statistical regeneration
 - Zhao et. al: +
 formation-time effect and
 B-hadron feed-down

STARJ/ψ R_{AA} vs N_{part} in Au+Au collisions at 200 GeV

 Higher R_{AA} for STAR than CMS for all centralities

J/ ψ in U+U collisions at 193 GeV

Non- spherical nucleus - higher initial energy density

STAR Energy dependence of J/ψ R_{CP}

