

Supported in part by

Experiment **Overview: STAR**

Sooraj Radhakrishnan (Kent State University) for the STAR Collaboration

Quark Matter 2025, Frankfurt, Germany

STAR and high energy nuclear physics

Underlying mechanisms of emergent properties of QGP: collectivity, vorticity, CME, jet quenching

Connections to EIC

Sooraj Radhakrishnan

T

Do we have a QCD critical point? Where does QGP dynamics turn on?

What are baryon interactions and bound states? Can we study nuclear structure from HIC?

STAR and high energy nuclear physics

Underlying mechanisms of emergent properties of QGP: collectivity, vorticity, CME, jet quenching

Connections to EIC

Sooraj Radhakrishnan

Do we have a QCD critical point? Where does QGP dynamics turn on?

> What are baryon interactions and bound states? Can we study nuclear structure from HIC?

> > STAR uniquely poised to answer questions on all these aspects

Beam Energy Scan, varied collision systems

High statistics BES-II dataset covering $100 < \mu_B < 760$ MeV

Recent high statistics isobar (Ru+Ru, Zr+Zr) and O+O datasets

Sooraj Radhakrishnan

Also varied collision systems at top RHIC energies: U+U, Au+Au, Ru+Ru/Zr+Zr, Cu+Au, Cu+Cu, O+O, d+Au, He3+Au, p+Au, p+Al, (polarized) p+p

STAR with BES-II and FWD upgrades

ETOF (-1.6 < η < -1.1, $-2.1 < \eta < -1.5$ in FXT)

EPD (2.1 < $|\eta| < 5.1$)

Targeted upgrades (23 in total over the years!) to make most of the RHIC program STAR

Sooraj Radhakrishnan

iTPC (-1.5 < η < 1.5)

FST, sTGC ($2.5 < \eta < 4.0$)

FCS, ECAL (2.5 < η < 4.0)

FCS, HCAL $(2.5 < \eta < 4.0)$

STAR with BES-II and FWD upgrades

ETOF (-1.6 < η < -1.1, $-2.1 < \eta < -1.5$ in FXT)

EPD (2.1 < $|\eta| < 5.1$)

Sooraj Radhakrishnan

iTPC (-1.5 < η < 1.5)

FST, sTGC ($2.5 < \eta < 4.0$)

FCS, ECAL (2.5 < η < 4.0)

FCS, HCAL $(2.5 < \eta < 4.0)$

21 talks and 55 posters at this Quark Matter from STAR!

Sooraj Radhakrishnan

QCD phase structure:

Critical point search, Onset of <u>deconfinement</u>

- Cumulants of conserved charge distributions relate to correlation length in the medium
- Higher order cumulant ratios of net-baryons predicted to be sensitive to existence of critical point

- Precision measurements from STAR BES-II
- and 3.9 GeV

0-5% Au+Au Collisions at RHIC

Sooraj Radhakrishnan

• Final results for collider energies $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV and FXT energies $\sqrt{s_{NN}}$ = 3.2, 3.5

Talk by Zachary Sweger, Wed, P35

- Precision measurements from STAR BES-II
- and 3.9 GeV

0-5% Au+Au Collisions at RHIC

Sooraj Radhakrishnan

• Final results for collider energies $\sqrt{s_{NN}}$ = 7.7 to 19.6 GeV and FXT energies $\sqrt{s_{NN}}$ = 3.2, 3.5

- In 3.2 3.9 GeV, C₄/C₂ is consistent with values from **UrQMD**
- Deviations seen at higher energies
- Analysis of 4.5 GeV and 2 billion events from Run21 3 GeV are ongoing

Talk by Zachary Sweger, Wed, P35

- Cumulants of conserved charge distributions relate to correlation length in the medium
- Precision data from BES-II Factor of 4.5 reduction for σ_{stat} and 3 – 4 for σ_{sys}

STAR: arXiv:2504.00817

2 - 5σ deviation from calculations without CP, peripheral data

Poster by Bappaditya Mondal, #771

Talk by Yige Huang, Wed, P30

<u>Rapidity scan of higher order cumulants</u>

• Widening y, p_T windows of measurement enhances potential critical contributions

Deviation from UrQMD increases with y acceptance and near 20 GeV

Sooraj Radhakrishnan

Poster by Xin Zhang #902 Poster by Yongcong Xu, #821 Talk by Yige Huang, Wed, P30

Baryon - Strangeness correlations

$$C_{BS} = -3 \frac{\langle BS \rangle_c}{\langle S^2 \rangle_c}$$

- C_{BS} in central collisions agree with FRG and LQCD at higher energies, with UrQMD at lower energies, deviate from both inbetween
- Agree with UrQMD at all energies in peripheral

Sooraj Radhakrishnan

 $= -3 \frac{\langle BS \rangle - \langle B \rangle \langle S \rangle}{\langle S^2 \rangle - \langle S \rangle^2}$

Proposed as a sensitive probe of deconfinement

- Partonic collectivity at 7.7 GeV and above
- interactions

Sooraj Radhakrishnan

• NCQ scaling for v₂ breaks completely at 3.2 GeV and below, indicates dominance of hadronic

Poster by Guoping Wang, #682

Talk by Sharangrav Sharma, Wed, P31

O p

Directed flow of identified hadrons

Directed flow sensitive probe of early time interactions and EoS

Sooraj Radhakrishnan

- Kaons show sign change as protons, but with minimum between 4.5 and 7.7 GeV
- Unexpectedly large v_1 for ϕ mesons in the high μ_B region, similar v_1 as protons and Λ !

Poster by Guangyu Zheng, #696

Talk by Sharangrav Sharma, Wed, P31

20

Strange hadron production

 Strange hadron yield ratios deviate from GCE for collision energies below ~ 5 GeV Less strangeness production, CE important

Sooraj Radhakrishnan

Sooraj Radhakrishnan

Hadron interactions and nuclear structure:

Baryon - baryon, baryon - nuclei interactions, bound states, nuclear imaging

<u>p-Ω correlations</u>

Source size FSI

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*,\vec{r})|^2 d^3 \vec{r}$ $= \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

- states?
- Use high-statistics isobar data to explore

Use correlation femtoscopy to study YN interactions

• Do we have strange di-baryon bound

<u>**p-** Ω correlations</u>

• Depletion in C(k*) around $k^* \sim 30 - 100$ MeV/c: indication of bound state

Sooraj Radhakrishnan

Use correlation femtoscopy to study YN interactions

- Negative scattering length (f_0) for p - Ω interactions
- First experimental evidence for strange di-baryon bound state

$$BE_{p\Omega} = \frac{1}{2m_{p\Omega}d_0^2} (1 - \sqrt{1 + \frac{2d_0}{f_0}})^2$$

Poster by Ke Mi, #669 Talk by Kehao Zhang, Tue, P21

<u>**p-** Ω correlations</u>

MeV/c: indication of bound state

Sooraj Radhakrishnan

Use correlation femtoscopy to study YN interactions

Light nuclei femtoscopy

Sooraj Radhakrishnan

 Y-N interactions important to understand neutron star EoS and structure of hyper-nuclei • High-statistics BES-II data at high μ_B to explore

- 5.3 **STAR** Estimated from $d-\Lambda$ Correlation Run 21 **STAR Preliminary** World average **STAR 2020** NPB1 1967 0.5
- Most accurate extraction of hyper triton BE using d - Λ correlations
- Measurements also of t Λ and He3 - Λ correlations

Talk by Xialei Jiang, Wed, P32

<u>3rd body Coulomb interactions</u>

- Isolate 3rd body Coulomb effect:
 - Extract Z_{res}^{eff} from $\pi + /\pi yield$ ratio,
 - Calculate Δp needed to produce the 3rd body Coulomb effect in UrQMD
 - Get correlation functions with the momentum shift

Sooraj Radhakrishnan

Measured femtoscopic source radii different for $\pi + \pi +$ and $\pi - \pi -$ pairs

3rd body Coulomb effect or isospin of the system?

- Correlation functions consistent after removal of 3rd body Coulomb effect
- •No significant isospin contribution seen

Talk by Vinh Luong, Wed, P32

<u>Hypernuclei measurements</u>

Hypernuclei production valuable tool to study Y-N interactions

Sooraj Radhakrishnan

- Extensive measurements of different hypernuclei from BES-II
- First measurement of A = 5 hypernuclei
- Thermal model over-predicts yields for most of the measured hypernuclei in the high $\mu_{\rm B}$ region
 - Thermal model: feed-down correction not included for $^{5}_{\Lambda}$ He

Nuclear imaging with HIC

- correlations
- structure

• Extracted U+U shape parameters β_2 and γ $\beta_{2U} = 0.297 + -0.015; \gamma_U = 8.5^0 + -4.8^0$

Large quadrupole deformation, consistent with low-energy measurements and indication of small triaxiality in U+U ground state

Sooraj Radhakrishnan

• Nuclear structure leaves imprints on v_n and $v_n - p_T$

 $\beta_{2\mathsf{U}}$

 Compare similar-sized systems U+U, Au+Au or Ru+Ru, Zr+Zr to gain insights on nuclear

Talk by Chunjian Zhang, Tue, P22

Sooraj Radhakrishnan

Understanding QGP properties:

Small systems: limits of collectivity, jet quenching, system size dependence of strangeness production

Origin of collectivity in small systems

- A better geometry scan with d+Au and O+O
- Similar-sized systems, but large difference in ε₂ in the small systems d+Au and O+O

Sooraj Radhakrishnan

O 0.8 0.8 0.6 0.6 0.40.4

Number of Tracks (Nch)

Talk by Zhengxi Yan, Mon, P1

Origin of collectivity in small systems

- A better geometry scan with d+Au and O+O
- Similar-sized systems, but large difference in ε₂ in the small systems d+Au and O+O

Sooraj Radhakrishnan

O+O nce in ε₂

 Clear scaling with geometry seen
 Origin of small-system v₂ from geometry response

Talk by Zhengxi Yan, Mon, P1

Origin of collectivity in small systems

Sooraj Radhakrishnan

 Both v₂ and v₃ scale well with eccentricities from sub-nucleon Glauber

Talk by Zhengxi Yan, Mon, P1

0+0

Jet quenching in O+O

Inclusive hadrons and jets

Indication of high-p_T jet suppression in O+O collisions

Sooraj Radhakrishnan

Do we see jet quenching in small systems?

Semi-inclusive h triggered jets

Talk by Sijie Zhang, Tue, P18

<u>Strangeness production in different systems</u>

Sooraj Radhakrishnan

- Strangeness enhancement and baryon/meson enhancement in QGP
- Ω/ϕ yield ratio enhanced in both O+O and isobar collisions from peripheral to central collisions
- Enhancement similar in central O+O and similar multiplicity isobar collisions

Talk by Weiguang Yuan, Wed, P29

Sooraj Radhakrishnan

Understanding QGP properties:

Thermal and vortical properties, CMW, hadrons in jets, hadronic <u>rescattering</u>

Thermal dielectrons

IMR - dominated by QGP thermal radiation LMR - thermal radiation from emission close to T_{pc}

Sooraj Radhakrishnan

- $T_{IMR} > T_{LMR}$ (2.9 σ higher in isobar)
- T_{IMR} = 293 ± 11 (stat) ± 27 (sys) MeV (Isobar 200 GeV)
- T_{LMR} close to T_{pc} and T_{ch} in Au+Au data (14.6 - 54.4 GeV)
- T_{LMR} in isobar 200 GeV shows higher values than T_{pc} (199 ± 6 (stat) ± 13 (sys) MeV)

Poster by Chenliang Jin, #666 Talk by Jiaxuan Luo, Wed, P33

Direct virtual photons

Sooraj Radhakrishnan

 Common scale factor for yields from 14.6 to 200 GeV measurements by STAR

 $\alpha = 1.43 \pm 0.04 \pm 0.04$

<u>A polarization in BES-II</u>

Λ global polarization could probe impact of late stage B-field in heavy-ion collisions

Also new measurements of non-zero Ξ and Ω polarization in BES-II energies

Sooraj Radhakrishnan

• No splitting between Λ and Λ global polarization seen in BES-II measurements

$$(P_{\bar{\Lambda}} - P_{\Lambda}) \approx \frac{2|\mu_{\Lambda}|B}{T}$$
$$T = 150 \text{ MeV}$$
$$\mu_{\Lambda} = -1.93 \times 10^{-14} \text{ M}$$

T - Temperature of emitting source μ_{Λ} - magnetic moment of Λ

• Estimated upper limit on late stage magnetic field: $B \leq 10^{13}$ Tesla (95% confidence level)

Poster by Tong Fu, #709 Poster by Qiang Hu, #932 Talk by Tan Lu, Mon, P1

- CME and Chiral Separation Effect can produce Chiral Magnetic Wave
- Creates charge dependent v₂

 $\Delta IC = \left(\langle v_2^- A_{ch} \rangle - \langle A_{ch} \rangle \langle v_2^- \rangle \right) - \left(\langle v_2^+ A_{ch} \rangle - \langle A_{ch} \rangle \langle v_2^+ \rangle \right)$

$$A_{ch} = \frac{N_{+} - N_{-}}{N_{+} + N_{-}}$$

Sooraj Radhakrishnan

- Correlation of charge dependent v₂ with charge asymmetry
- Isobar collisions to test impact of B field

 Consistent values in the two isobar systems

Talk by Ankita Singh Nain, Tue, P11

Baryon to meson ratio in jets

- compared to p+p
- Is B/M ratio enhanced within jets in A+A?

Sooraj Radhakrishnan

Coalescence hadronization in QGP, inclusive baryon to meson ratios enhanced in A+A

- For measured kinematics, no significant modification of p/π yield ratio within jets between p+p and Au+Au
- No significant difference in the in-cone radial evolution between p+p and Au+Au seen

Talk by Gabe Dale-Gau, Tue, P18

Directed flow of K*0

after freeze-out

Sooraj Radhakrishnan

Talk by Md. Nasim, Tue, P12

Sooraj Radhakrishnan

Spin correlation, **Photo-nuclear** interactions

<u>A spin correlations, J/ψ photo</u> production

<u>A pair spin correlation in p+p</u>

Sooraj Radhakrishnan

Talk by Jan Vanek, Mon, P1

<u>Coherent J/w production and polarization</u>

- J/ ψ production in photo nuclear collisions
- Linearly polarized photons, along impact parameter direction

Sooraj Radhakrishnan

- Polarization of photo produced J/ψ , correlated with reaction plane (impact parameter direction)
- Could be used to access initial geometry in photon induced processes

Poster by Zengzhi Li, #923

Talk by Kaiyang Wang, Wed, P34

STAR: 25 years and beyond!

25 years of expanding the horizons on high energy nuclear physics research! identifying Quark Gluon Plasma, measuring QGP temperature, detailed scan of QCD phase space ...

Sooraj Radhakrishnan

STAR: 25 years and beyond!

- Run 23 25: STAR forward upgrade (completed 2022), 5K DAQ rate
 - High statistics Au+Au, p+p data collection

25 years of expanding the horizons on high energy nuclear physics research!

- - - EIC

Sooraj Radhakrishnan

STAR BUR 2025

$\sqrt{s_{ m NN}}$	Species	Number Events/	Year
$({\rm GeV})$		Sampled Luminosity	
200	Au+Au	$8B+5B / 1.2 \text{ nb}^{-1}+20.8 \text{ nb}^{-1}$	2023+2024+ 2025 (20 си
200	Au+Au	$8B+9B / 1.2 \text{ nb}^{-1}+28.6 \text{ nb}^{-1}$	2023 + 2024 + 2025 (28 cm

Also 5 weeks of p+Au requested

More to come:

 Complete QCD phase scan from BES-II: EoS in different regions, search for 1st order phase boundary, map out Y-N, N-N interactions ...

• Run 22 - 25: Hard probes - improved kinematic reach, overlap with LHC, Forward physics and connections to

STAR: 25 years and beyond!

Many thanks to RHIC operations for the successful data taking over the years, the strong support from BNL computing facilities (SDCC) and NERSC at LBNL, and the highly successful international collaboration in STAR's journey in completing its science mission!

25 years of expanding the horizons on high energy nuclear physics research!

- - EIC

Sooraj Radhakrishnan

More to come:

 Complete QCD phase scan from BES-II: EoS in different regions, search for 1st order phase boundary, map out Y-N, N-N interactions ...

• Run 22 - 25: Hard probes - improved kinematic reach, overlap with LHC, Forward physics and connections to

<u>STAR - list of talks at QM2025</u>

No	ID	Title	Speker	Session
1	1133	Search for the Chiral Magnetic Wave at STAR with Isobar and Au+Au collisions	Ankita Singh Nain	P11 - 04/08
2	1131	Measurements of global and local spin polarization of hyperons in Au+Au collisions at RHIC-STAR	Tan Lu	P1 - 04/07
3	865	Measurement of \$\Lambda\$ \$\bar{\Lambda}\$ spin correlation in proton-proton collisions at STAR	Jan Vanek	P1 - 04/07
4	785	Measurement of Anisotropic Flow for BES-II Energies at RHIC-STAR	Sharang Rav Sharma	P31 - 04/0
5	822	Constraining the small system collectivity using d+Au and O+O collisions at \$\sqrt{s_{NN}}\$ = 200 GeV from STAR	Zhengxi Yan	P1 - 04/07
6	788	Measurement of directed flow of \$K^{*0}\$ and \$\phi\$ Resonances in Au+Au collisions at RHIC BES energies	Md. Nasim	P12 - 04/08
7	869	Residual 3rd-body Coulomb Effect on Identical Charged Pion Correlations	Vinh Luong	P32 - 04/0
8	764	Measurements of Light Nuclei (d, t, 3He) and Lambda correlation in Au+Au collisions at sqrt{s_{NN}}=3 GeV from STAR	Xialei Jiang	P32 - 04/09
9	763	Search for the Strange Dibaryons with Baryon Correlations in Isobar Collisions at STAR	Kehao Zhang	P21 - 04/08
10	1134	Strange, Non-strange and Multi-strange Hadron Production in Au+Au Collisions from STAR Fixed-Target Experiment	Hongcan Li	P23 - 04/08
11	806	Strangeness production in different collision systems and at different collision energies with the STAR experiment	Weiguang Yuan	P29 - 04/0
12	1132	New Hypernuclei Measurements from STAR	Yingjie Zhou	P29 - 04/0
13	918	Thermal dielectron measurements with the STAR experiment	Jiaxuan Luo	P33 - 04/0
14	912	Imaging shapes of atomic nuclei in high-energy nuclear collisions at STAR experiment	Chunjiang Zhang	P22 - 04/08
15	818	Direct virtual photon measurements in Au+Au collisions with STAR BES-II data	Xianwen Bao	P26 - 04/09
16	801	Measurements of Baryon-to-Meson Ratios Inside Jets in Au+Au and p+p Collisions at sqrt{s_{NN}} = 200 GeV at STAR	Gabe Del Gau	P18 - 04/08
17	921	Studies of jet quenching in O+O collisions at \$\sqrt{s_{NN}}\$ = 200 GeV by STAR	Sijie Zhang	P18 - 04/08
18	807	Photon-induced \$J/psi\$ production and polarization effects in isobar collisions at STAR	Kaiyang Wang	P34 - 04/0
19	872	Proton High-order Cumulants Results from the STAR Fixed-Target Program	Zachary Sweger	P35 - 04/09
20	770	Baryon-Strangeness Correlations in Au+Au Collisions at RHIC-STAR	Hanwen Feng	P30 - 04/0
21	768	Precision Measurement of Kinematic Range Scan of Fluctuations of (Net-)proton Multiplicity Distributions in Au+Au Collisions	Yige Huang	P30 - 04/0

Sooraj Radhakrishnan

<u>STAR - list of posters at QM2025</u>

No.	ID	Title	Presenter
1	829	phi-meson Local, Global, and Helicity Frame Spin Alignment at STAR	CW Robertson
2	699	Beam Energy Dependence of Directed Flow of pions and Kaons in Au+Au Collisions from STAR	Ze Qiu
3	696	Measurement of phi meson directed flow in sqrt(sNN) = 3 - 19.6 GeV Au+Au collisions from RHIC-STAR	Guangyu Zheng
4	682	Probing the QCD Phase Structure with Elliptic Flow in Au+Au Collisions at 3.0-19.6 GeV at RHIC	Guoping Wang
5	692	Measurements of elliptic and triangular flow in forward and backward rapidity in Au+Au collisions at sqrt{s_{NN} = 19.6 GeV at RHIC-STAR	Moe Isshiki
6	686	Triangular flow in Au + Au collisions at \$\sqrt{s_{NN}}\$ = 17.3 GeV from RHIC-STAR	Yuli Kong
7	896	Beam Energy Dependence of Baryon Directed Flow (v1) in Au + Au Collision at RHIC-STAR	Zhuo Wang
8	886	Exploring Electromagnetic-field Effects using Charge-Dependent Directed Flow from BES-II Data at STAR	Aditya Prasad Dash
9	917	Light- and Hyper-Nuclei Collectivity in \$\sqrt{s_{{NN}}\$ = 3.0 \$-\$ 4.5 GeV Au+Au Collisions at RHIC-STAR	Junyi Han
10	1055	The non-linear response coefficient \$\chi_{4,22}\$ in Au+Au and U+U collisions	Jie Zhao
11	899	Using an Innovative Event Shape Selection Method to Search for the Chiral Magnetic Effect with RHIC BES-II data at STAR	Yunshan Cheng
12	932	Measurements of \$\Lambda\$(\$\bar{\Lambda}\$) hyperons' local spin polarization in Au+Au collisions from the RHIC Beam Energy Scan-II	Qiang Hu
13	709	Measurement of global polarization of \$\Lambda\$ and \$\bar{\Lambda}\$ in Au+Au collisions from the RHIC Beam Energy Scan-II	Tong Fu
14	708	Measurements of \$\Xi^{\pm}\$ and \$\Omega^{\pm}\$ Hyperons Global Polarization in Au+Au collisions at BES-II energies from RHIC-STAR	Xingrui Gou
15	1104	First Measurements of Hyper-Nucleus \${}^3_{\Lambda}\$H Global Polarization in Au+Au collisions at STAR	Chenlu Hu
16	910	Probing Electromagnetic-field Effects and Coalescence Dynamics using Directed and Elliptic Flow of Identified Particles at STAR	Xiatong Wu
17	690	Measurement of system size dependence of directed flow of protons (anti-protons) at RHIC	Muhammad Farhan '
18	1103	Collision energy dependence of mean transverse momentum fluctuations in Au+Au collisions at STAR	Yining Gao

Sooraj Radhakrishnan

... continued on next page

Factor	
1 4 3 5 5 1	
es alvali di 200	
NAME AND A	in a
STA	
1997 AND	

STAR list of posters at QM2025

19	1020	Baryon-strangeness Correlation in Au+Au Collisions at \$\sqrt{s_{NN}}\$ = 3 GeV by STAR Fixed-target exp	Yu Zhang
20	821	Rapidity Dependence of Proton Higher-Order Cumulants in \$\sqrt{s_{NN}}\$ = 3.5, 3.9 Au+Au Collisions	Yongcong 2
21	669	Measurements of \$\Lambda\$-\$\Lambda\$ Correlation Function in Au+Au Collisions at \$\sqrt{s_{NN}}\$ = 3 GeV	Ke Mi
22	767	Pion femtoscopy with Lévy sources in Au+Au collisions at STAR	Mate Csan
23	902	Rapidity Dependence of Proton Higher-Order Cumulants in \$\sqrt{s_{NN}}\$ = 3.2, 3.5 and 3.9 GeV Au+Au Collisions	Xin Zhang
24	901	Precision Measurement of (Net-)proton Number Fluctuations in Au+Au Collisions at RHIC	Fan Si
25	774	Dynamical transverse momentum fluctuations at high baryon density measured by the STAR exp	Rutik Man
26	771	Precision measurement of 5th and 6th order cumulants and factorial cumulants of (net-)proton multiplicity distributions in Au+Au Collisions from BES-II	Bappadity
27	711	Production of Proton and Light Nuclei in Au+Au Collisions by RHIC-STAR in the High Baryon Density Region	Liubing Cl
28	815	Probing isospin violation under strong B-fields via production of \$K^{*0,pm}\$ mesons in Au+Au, Ru+Ru, Zr+Zr, O+O and p+p collisions at RHIC	Subhash S
29	983	Production of \$\rm {}^{3}_{\Lambda}H\$ and \$\rm {}^{4}_{\Lambda}H\$ in Au+Au collisions at \$\sqrt{s_{NN}}\$ = 3.2, 3.5, 3.9 and 4.5 GeV at STAR	Yuanjing J
30	832	K^{*0}\$ meson production in Au+Au collisions at high baryon densities from STAR BES-II experiments	Ziyue Xian
31	816	Production of light nuclei in Au+Au collisions with the STAR BES-II program	Yixuan Jin
32	812	System size dependence of strange hadron production at \$\sqrt{s_{\text{NN}}}\$ = 200 GeV at STAR	Xiongxion
33	700	Thermal dielectron production in Au+Au collisions at 17.3 GeV at STAR	Ziyang Li
34	666	Thermal dielectron measurements in Au+Au collisions at BES-II energies with the STAR experiment	Chenliang
35	846	Measurements of thermal dielectron production in isobar collisions at \$\sqrt{s_{\rm NN}}\$ = 200 GeV with STAR	Jiaxuan Lu
36	923	Probing gluon structure with J/ ψ photoproduction in isobaric ultra-peripheral collisions at 200 GeV with the STAR	Zengzhi Li
37	811	Investigating Entanglement Enabled Spin Interference in continuum \$\pi^+ \pi^-\$ and \$\rho^0\$ photoproduction in Au+Au collisions at STAR	Sam Corey

Sooraj Radhakrishnan

... continued on next page

STAR list of posters at QM2025

38	920	Measurements of proton-antiproton pairs from QED vacuum excitation in Au+Au ultra-peripheral collisions at \$\sqrt{s_{\rm{NN}}} = \$ 200 GeV from STAR	Xin Wu
39	1019	First Measurement of Photoproduction of \$\phi\$ Mesons in Ultra-Peripheral Au+Au Collisions at \$\sqrt{s_{NN}} = 200~\mathrm{GeV}\$ at STAR	Xihe Han
40	808	Measurement of dielectron production in Au+Au and U+U ultraperipheral collisions at STAR	Nicholas Jind
41	844	Coulomb Dissociation Measurements in Isobaric Collisions at \$\sqrt{s_{NN}} = 200\$ GeV with the STAR Experiment	Huda Nasrullo
42	928	Investigating quantum interference in Drell-S\$\ddot{{\rm o}}\$ding process in Au+Au collisions at \$\sqrt{s_{\rm NN}}\$ = 200 GeV at STAR	Xinbai Li
43	673	Study of Entanglement Enabled Spin Interference in peripheral Au+Au collisions with coherently photoproduced rho mesons in the STAR experiment	Leszek Kosar
44	924	Measurement of heavy-flavor electron production in Au+Au collisions at \$\sqrt{s_{NN}}\$ = 54.4 GeV at STAR	Veronika Proz
45	803	Measurement of \$J/psi\$ energy correlator in p+p collisions at \$\sqrt{s}=500\$ GeV at STAR	Dandan Shen
46	938	Measurement of \$D^0\$ Meson-Tagged Jet Generalized Angularities in Au+Au Collisions at \$\sqrt{s_{\mathrm{NN}}} = 200\$ GeV at STAR	Ondrej Lomic
47	705	Measurement of the \$\Upsilon\$ meson production in \$p\$+\$p\$ collisions at \$\sqrt{s}\$ = 510 GeV at the STAR experiment	Jakub Ceska
48	799	Generalized angularities of heavy flavor and inclusive jets in Au+Au collisions at \$\sqrt{s_{\mathrm{NN}}} = 200\$ GeV at STAR	Tanmay Pani
49	797	Observation of medium-induced acoplanarity using gamma and pi^{0}-triggered semi-inclusive recoil jet distributions in central Au+Au and p+p collisions at sort(s {NN}) = 200 GeV by STAR	Nihar Sahoo
50	796	Studying path-length dependent energy loss using jet \$v_1\$ and event shape engineered high momentum probes in heavy-ion collisions at sart{s {NN}} = 200 GeV by STAR	Isaac Mooney
51	1090	Measurement of photon-jet correlations in p+p and central Au+Au collisions at \sqrt{sN} N = 200 GeV by STAR	Jace Tyler
52	722	Semi-inclusive hadron+jet measurement in Ru+Ru and Zr+Zr collisions at \$\sqrt{s_\mathrm{NN}}\$ = 200 GeV in STAR	Yang He
53	794	Measurement of inclusive jet production in Au+Au collisions at \$\sqrt{s_\mathrm{NN}}=200\$ GeV	Michal Svobo
54	1053	Search for Collectivity in Photo-nuclear Processes at RHIC using STAR Detector	Souvik Paul
55	725	Directed flow of He4L and He5L in Au+Au collisions at #sqrt{s_{NN}} = 3.0 GeV	Junyi Han

Sooraj Radhakrishnan

