XIII International Conference on New Frontiers in Physics 26 Aug - 4 Sep 2024, OAC, Kolymbari, Crete, Greece

STAR (non-spin) Highlights

Barbara Trzeciak, for the STAR Collaboration Czech Technical University in Prague

Outline

- 1 STAR detector and physics program
- 2 QCD phase diagram and QGP properties
 - Critical point, Collectivity, Vorticity, Strangeness, Dielectrons, Quarkonia
- ³ Particle production
 - Light (hyper-)nuclei production, Baryon number carrier
- 4 Detector upgrades and future

STAR detector at RHIC

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

100

Wide range of collision beam FTS **EPD** VPD BEMC TPC (iTPC) TOF $2.1 < |\eta| < 5.1$ $4.2 < |\eta| < 5.1$ $2.5 < |\eta| < 4.0$ BSMD |η| < 1.5 |n| < 1.0energies $|\eta| < 1.0$ ➔ Different collision species at the top eTOF RHIC energy $-1.1 > \eta > -1.6$ Forward Calorimetry Increase in statistics over the years **EMCal**, HCal **RHIC** collision energies, species, luminosities $2.5 < \eta < 4.0$ (Run-1 to 22, excluding FXT energies) Magnet p⁺p[†] p↑+Au d+Au h+Au 0+0 → BES-II upgrades: iTPC, eTOF, EPD Cu+Cu Average store Cu+Au ➔ Forward upgrades (2022+): Zr+Zr Ru+Ru Au+Au Tracking: FTS, Forward Calorimetry: U+U 0.01 EMCal, HCal 8 9 12 15 17 20 23 27 39 54 56 62 130 193 200 410 500 510 **Center-of-mass energy** $\sqrt{s_{NN}}$ [GeV] (scale not linear)

AR

BES-II and Fixed-Target program

→ Explore QCD phase diagram at finite µ_B

- Higher statistics than BES-I
- Wider pseudo-rapidity acceptance
- Systematically explore high baryon density region (200 < μ_B < 750 MeV)
- ➔ Fixed target program extends µ_B reach to 750 MeV

Baryon Chemical Potential μ_{B}

BES-II and Fixed-Target setup

→ Explore QCD phase diagram at finite µ_B

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

BES-II Upgrades

- → iTPC (2019+)
 - Extended η acceptance and improved tracking and dE/dx resolution
- → eTOF (2019+)
 - Extended PID in forward region
- → EPD (2018+)

5

• Improved EP resolution, centrality detector

AR

Search for CP: net-proton cumulants

STAR

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C₄/C₂: non-monotonic behaviour expected around critical point
 - n: net-proton multiplicity in an event $\delta n = n \langle n \rangle$; $C_2 = \langle \delta n^2 \rangle$; $C_4 = \langle \delta n^4 \rangle 3 \langle \delta n^2 \rangle$

Hint of non-monotonic trend in BES-I

 Solid conclusion require confirmation from precision measurements with BES-II data

Search for CP: net-proton cumulants

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C₄/C₂: non-monotonic behaviour expected around critical point

- → New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- → C₄/C₂ shows minimum at ~20 GeV compared to 70-80% data and models without CP

Elliptic flow at BES-II

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
 - Expected universal curve for v₂ vs m_T per quark

Elliptic flow at BES-II

- Equation of State of the medium; constituent interactions and degrees of freedom
- Number of Constituent Quark Scaling: Each quark flows independently
 - Universal curve for v_2 vs m_T per quark at $\sqrt{s_{NN}} > 7.7$ GeV

Initial spatial anisotropy → Pressure gradient → Momentum space anisotropy

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \left(1 + \sum 2v_{n} \cos n(\phi - \Psi_{n}^{EP})\right)$$

- → Partonic collectivity at $\sqrt{s_{NN}}$ = 7.7 200 GeV; $\sqrt{s_{NN}}$ = 3 GeV: hadronic interactions dominate
- Change of degrees of freedom 3 7.7 GeV ?

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Elliptic flow at high high µ_B region

Light and strange hadron elliptic flow

- → v_2 NCQ scaling breaks at $\sqrt{s_{NN}}$ = 3.2 GeV and below, gradually restores towards 4.5 GeV
 - Dominance of hadronic matter at the high-baryon-density region
- → Negative → positive v₂: Out-of-plane → In-plane expansion between 3 4.5 GeV

Energy dependence of v_1 slope at high μ_B

Sensitive probe of the Equation of State of the dense matter

- π, K, p, Λ measured across collision energies at high μ_B
- Positive v₁ slope; v₁ slope of baryons drops as collision energy increases
- Hadronic transport model JAM2 with baryonic mean-field interactions better describe data
 - → EoS dominated by baryonic interactions at high μ_B

Figure: Phys. Rev. Lett. 111, 232302 (2013)

11

v1 reflect asymmetry along x direction

Strangeness production at high μ_B

- Sensitivity to nuclear Equation of State
- Comprehensive measurements of strange hadron production at FXT energies

- → Grand Canonical Ensemble (GCE) fails for √s_{NN} < 4 GeV;</p>
 - Local strangeness conservation required –
 Canonical Ensemble favored, with strangeness correlation length 2.9 - 3.9 fm
- Change of medium properties at the highbaryon-density region

Global Λ **polarization**

- → Increasing global polarization, P_{H} , trend down to $\sqrt{s_{NN}}$ = 3 GeV
- → Difference between Λ and anti- Λ ?

Energy dependence of Λ polarization

- → New STAR preliminary results at $\sqrt{s_{NN}}$ =7.7-17.3 GeV from BES-II: significant improvement in precision
- → No splitting between Λ and anti- Λ global polarization within uncertainties
 - Upper limit on late stage magnetic field

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

- 95% confidence level STAR, PRC 108,014910(2023)
- $B < 9.4 \times 10^{12} T$ at 19.6 GeV
- $B < 1.4 \times 10^{13} T$ at 27 GeV

Thermal dielectron spectra

• Direct access to temperature of QGP phase and partonic \rightarrow hadron phase transition

Clear enhancement compared to hadronic cocktail in both low mass region (LMR) and intermediate mass region (IMR)

Thermal dielectrons vs μ_B

■ Direct access to temperature of QGP phase and partonic → hadron phase transition

- → T^{LMR} is close to both T_{ch} and T_{pc} → Emitted from hadronic phase
- → T^{IMR} is higher than T^{LMR} → Emitted from partonic QGP phase

- The integrated excess yield (data cocktail, normalized by Nπ⁰) shows a hint of decreasing trend with increasing μ_B
- ➔ Connection between STAR BES-I and HADES data

→ No significant energy dependence of the J/ ψ suppression at RHIC at similar N_{part}

- → Central collisions: no significant energy dependence from $\sqrt{s_{NN}}$ = 7.7 up to 200 GeV
 - ➔ Interplay of dissociated and regeneration effects from RHIC to LHC energies

Sequential suppression of quarkonia

Medium thermodynamic properties

- Hint of sequential Upsilon suppression in isobar collisions, similar to that in Au+Au at similar <N_{part}>
- ➔ First observation of charmonium sequential suppression in heavy-ion collisions at RHIC

Hypernuclei production in HI collisions

- Production mechanism of hypernuclei is still not well understood
- Natural laboratory to study **Hyperon-Nucleon (Y-N) interactions** → EOS of neutron stars

→ High baryon density → enhanced production of hypernuclei

 RHIC BES-II offers great opportunity for hypernuclei measurements.

Hypernuclei production and lifetime

STAR preliminary

PRC 76(2007)035501

NPA 639(1998)251c

500

400

- → First energy dependence of ${}^{3}_{\Lambda}$ H production yields in high-µ_B region
 - Hadronic transport + coalescence models qualitatively describe the data
- → The first observation of Anti-Hyper-Hydrogen-4
- Precise ⁴^AH and ⁴^AHe lifetimes measurements in heavy-ion collisions
- Towards quantitative understanding of Y-N interaction

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

100

200

300

Lifetime [ps]

Hypernuclei <p_T> at high μ_B

→ $\langle p_T \rangle$ vs mass follows a linear mass scaling at $\sqrt{s_{NN}}$ = 3.0, 3.2, 3.5 GeV

Particle yields + <p_T> slope + v₁ slope (backup) support coalescence picture of hypernuclei production at mid-rapidity

Light (hyper-)Nuclei-to-Hadron ratios

- Thermal model overpredicts t/p and ³_ΛH /Λ ratios
- → Suggests that ³^AH and t yields are not in equilibrium and fixed at chemical freeze-out simultaneously with other hadrons

STAR, PRL 130 (2023) 202301 STAR, arXiv: 2311.11020 T. Reichert, et al, PRC 107 (2023) 014912

Baryon number carrier

- Central collisions, B×ΔZ/A ~ 2×ΔQ
 - significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

Baryon number carrier

- Central collisions, B×ΔZ/A ~ 2×ΔQ
 - significantly higher than naïve expectation of 1 for valence quarks carrying baryon number

- Three independent experimental tests performed
 - Isobar collisions: significantly more baryon transport than charge transport
 - γ+Au: clear baryon transport with a rapidity slope smaller than PYTHIA predictions
 - ➔ Au+Au: rapidity slope independent of centrality
- All disfavour the scenario where the baryon number is carried by valence quarks

Strangeness production at high energy

- Strangeness production dependence on the colliding system
- d+Au: bridge the multiplicity gap between peripheral A+A and p+p

Hyperon-to-pion yield ratio

→ Strangeness production seems to follow a global trend mainly driven by event multiplicity

Strange hadron-to-pion yield ratio

K^{*0} resonance production in isobar collisions

- STAR
- Resonance/non-resonance ratio, re-scattering and regeneration effects → probing hadronic phase

➔ Evidence of late stage hadronic re-scattering effect

Forward Upgrade and 2023-25 Runs

→ Forward Tracking System (FTS)

Forward Silicon Tracker (FST) Forward Small-strip Thin Gap Chambers Tracker (FTT)

Forward Colorimeter System (FCS)

Electromagnetic Calorimeter

Hadronic Calorimeter • STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Hot QCD – study of microstructure of QGP

Au+Au @200 GeV (2023 & 25)

- What is the nature of the 3-dimensional initial state at RHIC energies?
- What can be learned about confinement from charmonia measurements?
- What are the electrical, magnetic and chiral properties of the medium?
- What is the precise nature of the transition near $\mu_{\rm B}$ =0?

Cold QCD: Equal N-N luminosities in pp and pAu in 2024 essential to optimize several critical measurements

- First look gluon GPD \rightarrow Eg
- Nuclear dependence of PDFs, FF, and TMDs
- Non-linear effects in QCD

 Very rich STAR physics program with wide range of colliding species and colliding energies

- ^O Stay tuned for more BES-II and FXT results
- More cold and hot QCD studies with p+p, p+Au and Au+Au @
 200 GeV taken in 2023-2025

Thank you !

Backup

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Energy Dependence of C₄ /C₂: Comparison with BES-I

- Cumulants of conserved charge distributions relate to correlation length in the medium
- C₄/C₂: non-monotonic behaviour expected around critical point

Deviation between BES-II and BES-I data

$\sqrt{s_{\scriptscriptstyle NN}}$ (GeV)	0-5%	70-80%	
7.7	1.0 <i>σ</i>	0.9σ	
11.5	0.4 <i>o</i>	1.3σ	
14.6	2.2σ	2.5σ	
19.6	0.7σ	0.0σ	
27	1.4 <i>o</i>	0.2σ	

- → New high-precision BES-II measurement for $\sqrt{s_{NN}}$ = 7.7-27 GeV
- → BES-II results consistent with BES-I within uncertainties

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Anisotropic flow

- Anisotropies in particle momentum distributions
- Initial spatial anisotropy → Pressure gradient → Momentum space anisotropy
- Initial electromagnetic field → Directed flow

$$E\frac{d^{3}N}{dp^{3}} = \frac{1}{2\pi}\frac{d^{2}N}{p_{T}dp_{T}dy}\left(1 + \sum_{1}^{\infty} 2v_{n}\cos\left[n\left(\phi - \psi_{r}\right)\right]\right)$$
$$v_{1} = \cos\left(\phi - \psi_{r}\right) = \left\langle\frac{p_{x}}{p_{T}}\right\rangle \qquad \text{directed flow}$$
$$v_{2} = \cos\left[2(\phi - \psi_{r})\right] = \left\langle\frac{p_{x}^{2} - p_{y}^{2}}{p_{x}^{2} + p_{y}^{2}}\right\rangle \qquad \text{elliptic flow}$$

- 1) Equation of State of the medium
- 2) Constituent interactions and degree of freedom

p_T dependence of v_1 slope at high μ_B

projectile (n>0)

Energy dependence of nuclei <p_>

- Similar $\langle p_T \rangle$ for $^3_\Lambda H$ and t
- Blast-wave fit using measured kinetic freeze-out parameters from light hadrons (π , K, p) overestimates both $^3_{\Lambda}H$ and t

 $^{3}_{\Lambda}H$ and t do not follow same collective expansion as light hadrons. Can be interpreted as $^{3}_{\Lambda}H$ and t decoupling at different times compared to light hadrons

- Different trend for
$$\sqrt{s_{NN}}$$
 = 3-4.5 GeV and $\sqrt{s_{NN}}$ = 7.7-27 GeV

• Suggest different expansion dynamics?

Light nuclei collectivity vs energy

- → AMPT(SM) model with coalescence describes deuteron v₂ and v₃
- ➔ Insight into light nuclei production mechanism in HI collisions

Light nuclei collectivity vs energy

→ Light nuclei v₂ obeys mass number scaling at ~30% level in BES energies

STAR Highlights | B.Trzeciak | ICNFP 2024, Crete, Greece | Sept. 3, 2024

Directed flow of light and hyper nuclei at high μ_B

- → v₁ slope: consistent with hadronic transport model (JAM2 mean field + Coalescence)
- → Particle yields + <p_T> slope + v₁ slope support coalescence picture of light (hyper-)nuclei production

Energy dependence of S₃

A prominent enhancement of the strangeness population factor S₃ was proposed as a probe for deconfinement

$$S_3 = \frac{{}_{\Lambda}^3 H}{{}^3 He \times \frac{\Lambda}{p}}$$

- Data shows a mild increasing trend from s_{NN} = 3.0 GeV to 2.76 TeV
- Thermal-FIST, which includes feed-down from unstable nuclei to stable p, ³He, describes the S₃ data better
 - Feed-down from unstable nuclei important

A. Andronic et al, PLB 697 (2011) 203 (Thermal (GSI)) S. Zhang, PLB 684 (2010) 224 (Coal.+AMPT) T. Reichert, et al, PRC 107 (2023) 014912 (UrQMD, Thermal-FIST)

${}^{3}_{\Lambda}H/\Lambda$ and S_{3} dependence on the system size

Measurement in isobar collisions at 200 GeV

- ➔ STAR and ALICE data consistent
- Similar mechanisms for hypernuclei production at RHIC and LHC energies

Significance of deviation	Ana. coal. (2-body)	Ana. coal. (3-body)	MUSIC+UrQMD+Coal (average B_{Λ})	Thermal
$^{3}_{\Lambda}{ m H}/\Lambda$	3.8 σ	1.9 σ	3.8 σ	> 5 σ
S ₃	6.6 σ	3.9 σ	3.6 σ	> 8 σ

Analytical Coalescence: K.-J. Sun et.al., PLB 792, 132–137 (2019) MUSIC + UrQMD + Coalescence: K.-J. Sun et.al. arXiv:2404.02701 Thermal-Fist:: V. Vovchenko, H. Stoecker, Comput. Phys. Commun. 244, 295-310 (2019)

Baryon number carrier

Valence Quarks

- Carry large momentum fractions
- > Hard to be stopped at midrapidity $\circ dN/d\Delta y \sim \exp(-2.4\Delta y)$ (PYTHIA)

 $\Delta y = Y_{\text{beam}} - y$

Valence Quarks:

• $Q \sim B \times Z/A$

Junctions

X. Artru, Nucl. Phys. B 85 (1975) 442 G. C. Rossi, G. Veneziano, Nucl. Phys. B 123 (1977) 507

- Consist of low-momentum gluons
- Easier to be stopped at midrapidity $\circ dN/d\Delta y \sim \exp(-0.5\Delta y)$ (theory)

Theory: D. Kharzeev, PLB 378 (1996) 238

Junctions:

VS.

• $Q < B \times Z/A$

Baryon number carrier (2)

- → Test 2: Net-proton dN/d∆y in y+Au events
- → Test 3: Net-proton vs. Rapidity Shift in Au+Au events

→ Clear excess of p over anti-p → incoming photons can stop baryon number

Junction theory: D. Kharzeev, PLB 378 (1996) 238

➢ No centrality dependence of the slope → not expected for valence quark stopping

$$> Slope_{\gamma+Au} > Slope_{Au+Au}$$

- Qualitatively consistent with baryon junction prediction
- Smaller than HERWIG and PYTHIA predictions

AR