STAR J/ ψ and $\psi(2S)$ measurements in p+p collisions at $\sqrt{s} = 200$ and 500 GeV in the STAR experiment

Barbara Trzeciak for the STAR Collaboration Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Hot Quarks 2014 September 21-28, 2014 Les Negras, Andalucia, Spain

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Charmonia in p+p collisions

Charmonia in p+p collisions

- **Production mechanism** in elementary collisions is not fully understood
 - Color singlet vs color octet
 - <u>Color-singlet process</u>: J/ψ is produced via intermediate color-neutral $c \overline{c}$ state with the same quantum numbers as the final J/ψ state
 - <u>Color-octet process</u>: J/ ψ is produced via intermediate colored $c \overline{c}$ state of any possible quantum numbers

Quarkonium measurements - tests of different production models, help to understand QCD

Charmonia in p+p collisions

Feed-down

Inclusive J/ ψ production:

- prompt J/ψ
 - direct J/ψ (~60%), feed down from ψ(2S) (~10%) and χ_c (~30%) decays
- non-prompt J/ψ: B-mesons feed-down (10-25% at 4-12 GeV/c, STAR: Phys. Lett. B722 (2013) 55)

 J/ψ , $\psi(2S) \rightarrow e^+ e^-$

 J/ψ , $\psi(2S) \rightarrow e^+ e^-$

 J/ψ , $\psi(2S) \rightarrow e^+ e^-$

 J/ψ , $\psi(2S) \rightarrow e^+ e^-$

J/Ψ and Ψ(2S) signals

p+p 200 GeV

STAR

$J/\Psi p_{\tau}$ spectrum in p+p 200 GeV

Test of charmonium production models

STAR MB: Acta Phys. Polonica B Vol.5, No 2 (2012), 543

0 12 14 p_{_} (GeV/c)

10

$J/\Psi p_{\tau}$ spectrum in p+p 500 GeV

SI

$J/\Psi x_{\tau}$ scaling

$$x_T = 2p_T / \sqrt{s}$$
$$\frac{d^2 \sigma}{2\pi p_T dp_T dy} = g(x_T) / (\sqrt{s})^n$$

 $p_{T} > 5 \text{ GeV/c} - J/\psi$ production follows the x_{T} scaling of cross-section at mid-rapidity, with n = 5.6 (Phys. Rev. C 80, 041902 (2009))

→ x_T scaling breaking transition from hard to
 soft process

n – number of constituents taking an active role in hadron production

27/09/2014

Ψ(2S) in p+p 500 GeV

- Further test of charmonium production models
- Constrain $\psi(2S)$ feed-down contribution to inclusive J/ ψ production

- ✓ First measurement of ($\psi(2S)$ / J/ ψ) ratio in p+p at 500 GeV
 - Consistent with other experiments
 - No collision energy dependence observed

B-> J/Ψ fraction in p+p 200 GeV

 Measurement based on azimuthal angular correlations between highp_T J/ψ and charged hadrons

→ B-hadron feed-down contribution: 10-25%, in the range 4 < p_T < 12 GeV/c

Agreement with
 FONLL + CEM prediction

B-> J/Ψ fraction in p+p 200 GeV

Measurement based on azimuthal angular correlation between high-p_T
 J/ψ and charged hadrons

- → B-hadron feed-down contribution: 10-25%, in the range $4 < p_T < 12$ GeV/c
- Agreement with
 FONLL + CEM prediction
 and with measurements
 from other experiments

J/W polarization

- > Discrimination power between different J/ψ production models
 - Competing mechanisms domination in different theoretical approaches lead to different expected polarization

 J/ψ polarization can be analyzed via the angular distribution of the decay lepton pair

 $\frac{d\sigma}{d(\cos\theta)d\phi} \propto 1 + \lambda_{\theta}\cos^2\theta + \lambda_{\theta\phi}\sin(2\theta)\cos\phi + \lambda_{\phi}\sin^2\theta\cos(2\phi)$

- ✓ θ polar angle between momentum of a positive lepton in the J/ψ rest frame and the polarization axis *z*
- $\checkmark \phi$ corresponding azimuthal angle

In the *helicity frame* z axis is defined along the J/ ψ momentum in the center of mass frame

J/Ψ polarization

- Discrimination power between different J/ψ production models
 Competing mechanisms domination in different theoretical approaches lead to different expected polarization
 - $J = 1 \rightarrow \text{three } J_z \text{ eigenstates } |1, +1\rangle, |1, 0\rangle, |1, -1\rangle$

J/Ψ polarization in p+p 200 GeV

The angular distribution integrated over the azimuthal angle:

 $W(\cos\theta) \propto 1 + \lambda_{\theta} \cos^2\theta$

 λ_{θ} – polarization parameter

 $\lambda_{\theta} = -1$ - longitudinal polarization $\lambda_{\theta} = 1$ - transverse polarization

- ✓ Polarization parameter λ_{θ} is measured in the helicity frame at |y| < 1 and $2 < p_{T} < 6$ GeV/c
 - → RHIC data indicate trend towards longitudinal polarization with increasing p_T
 - The result is consistent with NLO+ CSM

(2010)

J/Ψ polarization in p+p 500 GeV

- Information about full decay angular distribution
 - Measurement in progress, larger statistics ~22 pb⁻¹ vs ~1.8 pb⁻¹

 ${}^{\scriptscriptstyle \nu}$ Reconstruction of both θ and ϕ angles

 $_{\prime}$ J/ ψ signal up to $p_{\tau} \sim$ 15 GeV/c, can be divided into \sim 5 p_{τ} bins

Upgrades Fully installed and take data since 2014 **STAR**

Muon Telescope Detector (MTD)

Precision quarkonium TPC TOF measurements via di-µ channel

μ advantages over e:

- No γ conversion
- Much less Dalitz decay contribution
- Less affected by radiative loses in the detector material

× Acceptance: 45% at $|\eta| < 0.5$

- Multi-gap Resistive
 Plate Chamber
 (MRPC) gas detector
- * Long-MRPCs

<u>Heavy Flavor Tracker (HFT)</u>

Inner tracking system with 3 sub-systems

Precise pointing resolution

 $B \rightarrow J/\psi + X$

Summary

- NLO CS+CO and CEM models describe the J/ψ p_T spectrum in// p+p 200 GeV
- > New J/ ψ measurement in p+p 500 GeV production follows x_T scaling at high p_T
- > First $\psi(2S)$ / J/ ψ measurement in p+p at 500 GeV no collision energy dependence observed
- $^{\scriptscriptstyle >}$ J/ ψ polarization in p+p 200 GeV consistent with the NLO^+ CSM prediction
- > Measurement of J/ ψ polarization in p+p 500 GeV in progress
- → HFT and MTD since 2014 significant improvement of quarkonium measurements
 Czech Technical University in Prague

Faculty of Nuclear Science and Physical Engineering

Project " Support of inter-sectoral mobility and quality enhancement of research teams at Czech Technical University in Prague "

CZ.1.07/2.3.00/30.0034

Thank you !

J/Ψ production mechanism - CSM

Comparison of CSM to RHIC data

J/W production mechanism - NRQCD

Each color singlet and octet term has a specific polarization associated

C. Lourenço et al., Hard Probes 2013

normalizations (LDMEs)

J/Ψ polarization - observation frames

P. Faccioli, C. Laorenco, J. Seixas, H.K. Wohri, Eur. Phys. J. C 69, 657 (2010)

J/Ψ polarization - frame invariant approach

Any arbitrary choice of the experimental observation frame will give the same value of this quantity

P. Faccioli, C. Laorenco, J. Seixas, H.K. Wohri, Eur. Phys. J. C 69, 657 (2010)