

STAR BES-II Status and Analysis Plan

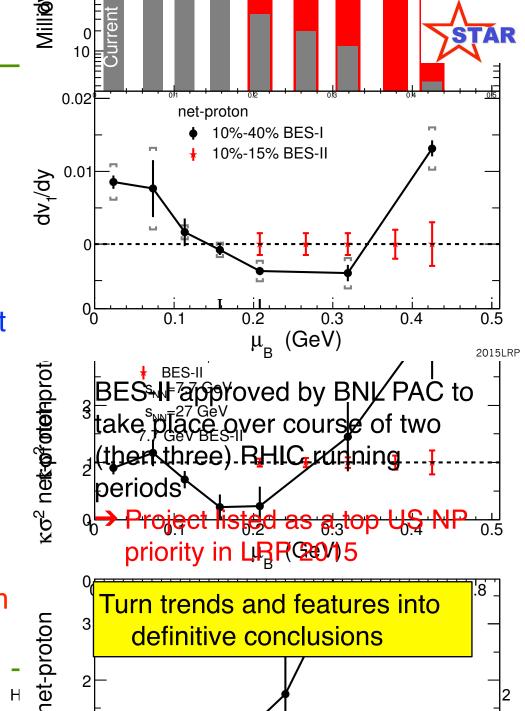
Helen Caines - Wright Lab, Yale - on behalf of the STAR Collaboration

BES-I → BES-II

BES-I:
Hints that at low √s

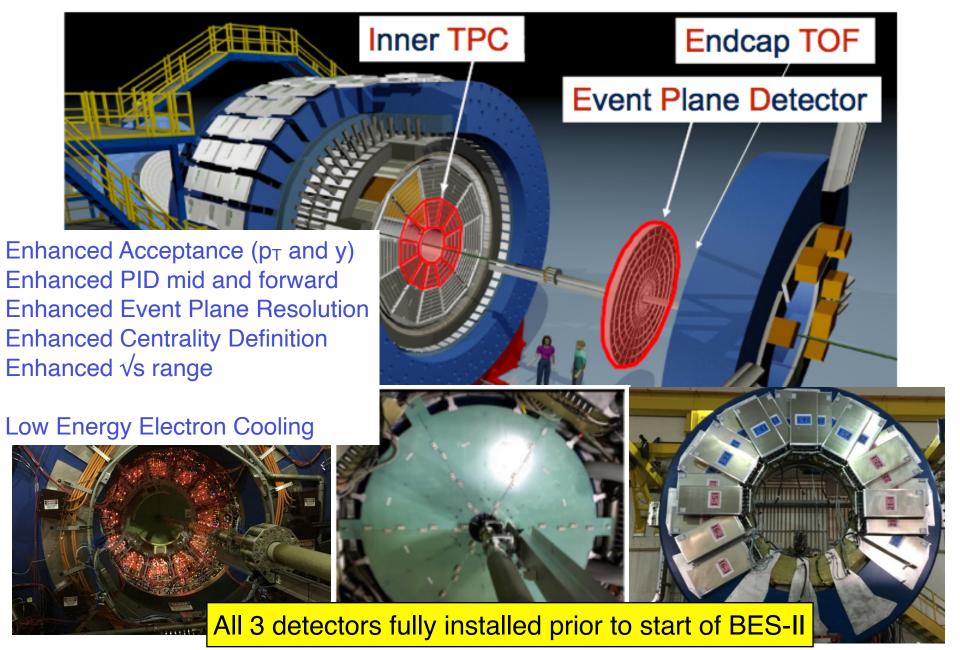
QGP turns off
Ordered phase transition
Critical Point

BES-II:

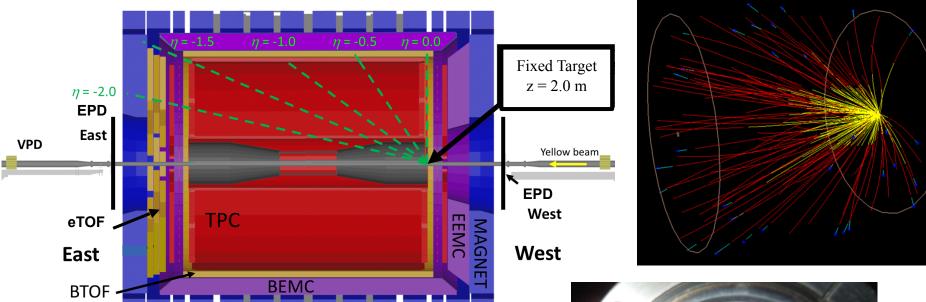

Focus in on regions of interest

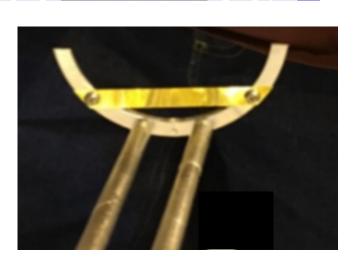
Need higher statistics

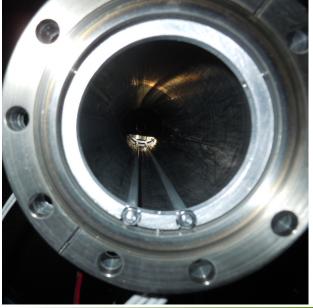
Need to maximize fraction particles measured


Need lower energies

- Fixed Target (FXT) program
- electron cooling of beam


The BES-II Upgrades


The fixed-target (FXT) setup



Gold Target:

- 250 μm foil
- 2 cm below nominal beam axis
- 2 m from center of STAR

Original planning for the BES-II

Berndt Mueller's (ALD) proposed charge

We anticipate the 2019 RHIC run to constitute the first year of a twoyear high statistics beam energy scan.

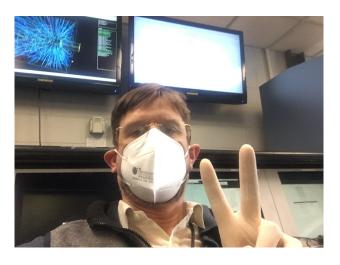
The 2017 PAC assigned highest priority to proposed Au+Au runs at 11.5, 14.5, and 19.6 GeV, interleaved by brief fixed target runs at the same beam energies, as well as dedicated fixed target runs corresponding to CM energies of 7.7, 6.2, and 5.2 GeV. The PAC tentatively recommended Au+Au runs in the collider mode at 9.1 and 7.7 GeV during the 2020 RHIC campaign.

STAR should not simply take these tentative recommendations as a given, but reconsider and justify the prioritized set of beam energies and the requested accumulated statistics at each energy, assuming either 24 cryo-week runs or 20 cryo-week runs in each of the years 2019 and 2020

Helen Caines - Collab. meeting, LBNL Jan 2018

2

Then the pandemic hit



Zhangbu Xu (BNL)

Rosi Reed (Lehigh)

Dan Cebra (UC Davis)

Liz Mogavero (BNL)

Run-19 went very well

Run-20 halted in March

- lots of new safety protocols in place
- shift crew reduced and some remote
- minimal-to-no face-toface interactions

Were able to restart in the June - all planned data collected

Run-21 undertaken with similar restrictions as Run-20b

√s _{NN} (GeV)	Beam Energy (GeV/nucleon)	Collider or Fixed Target	Y center of mass	μ _B (MeV)	Run Time (days)	No. Events Collected (Request)	Date Collected
200	100	С	0	25	2.0	138 M (140 M)	Run-19
27	13.5	С	0	156	24	555 M (700 M)	Run-18
19.6	9.8	С	0	206	36	582 M (400 M)	Run-19
17.3	8.65	С	0	230	14	256 M (250 M)	Run-21
14.6	7.3	С	0	262	60	324 M (310 M)	Run-19
13.7	100	FXT	2.69	276	0.5	52 M (50 M)	Run-21
11.5	5.75	С	0	316	54	235 M (230 M)	Run-20
11.5	70	FXT	2.51	316	0.5	50 M (50 M)	Run-21
9.2	4.59	С	0	372	102	162 M (160 M)	Run-20+20b
9.2	44.5	FXT	2.28	372	0.5	50 M (50 M)	Run-21
7.7	3.85	С	0	420	90	100 M (100 M)	Run-21
7.7	31.2	FXT	2.10	420	0.5+1.0+ scattered	50 M + 112 M + 100 M (100 M)	Run-19+20+21
7.2	26.5	FXT	2.02	443	2+Parasitic with CEC	155 M + 317 M	Run-18+20
6.2	19.5	FXT	1.87	487	1.4	118 M (100 M)	Run-20
5.2	13.5	FXT	1.68	541	1.0	103 M (100 M)	Run-20
4.5	9.8	FXT	1.52	589	0.9	108 M (100 M)	Run-20
3.9	7.3	FXT	1.37	633	1.1	117 M (100 M)	Run-20
3.5	5.75	FXT	1.25	666	0.9	116 M (100 M)	Run-20
3.2	4.59	FXT	1.13	699	2.0	200 M (200 M)	Run-19
3.0	3.85	FXT	1.05	721	4.6	259 M -> 2B(100 M -> 2B)	Run-18+21

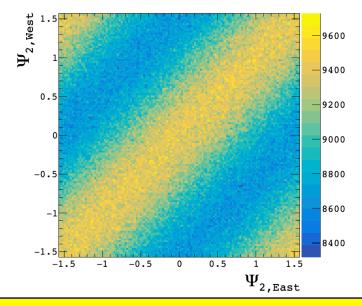
iTPC: Enhanced acceptance

Successfully integrated into data-taking since day 1 of BES-II

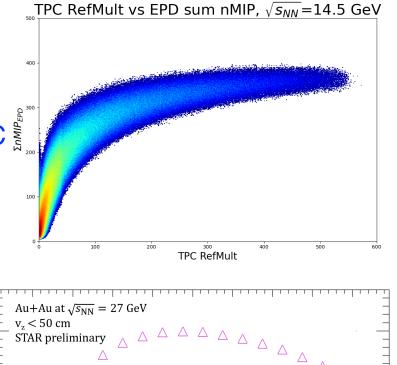
Projected detector performance criteria met

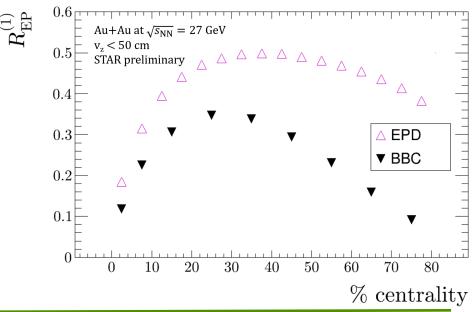
Demonstrated improvement:

Increased pseudorapidity coverage Improved dE/dx resolution



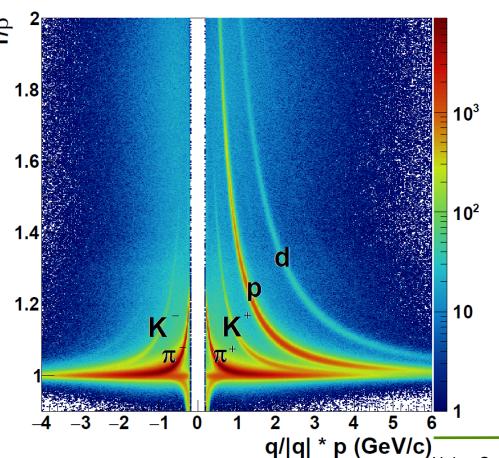
EPD: Enhanced event plane resolution

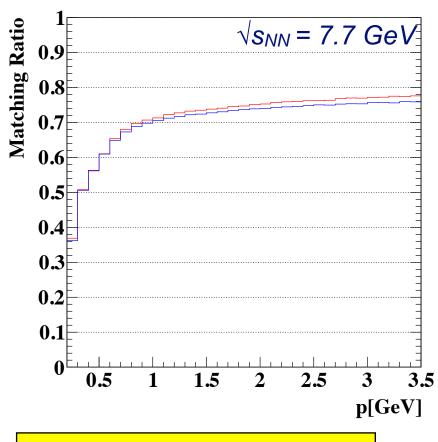



All tiles operational from Run-18 (pre-BES-II) $2.1 < |\eta| < 5.1$

BES-II: Main trigger detector Greater acceptance than VPD or ZDC Better timing resolution than BBC (0.75 ns)

Event plane (and centrality) outside of iTPC acceptance

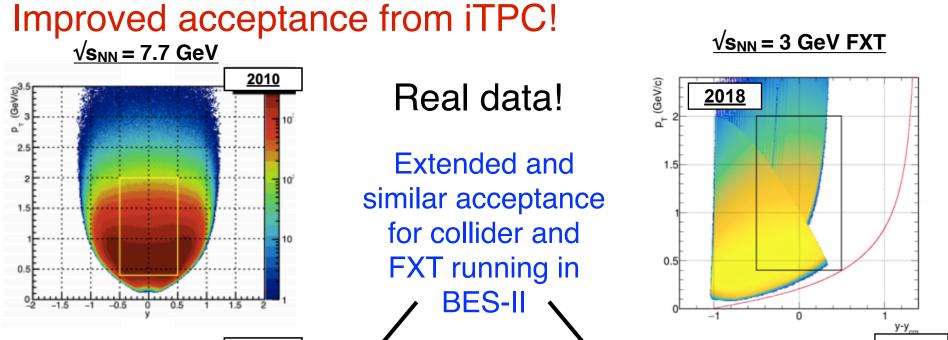

eToF - Joint STAR-CBM initiative

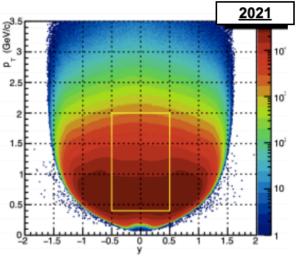


Matching efficiency >70% above 1 GeV/c

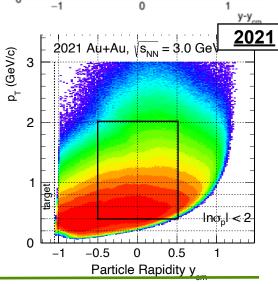
Timing ~80ps

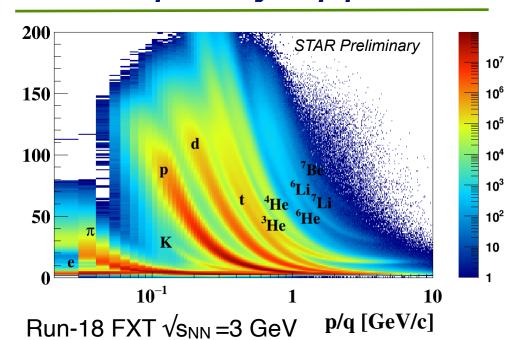
 K/π separation up to p = 2.5 GeV/c




Critical for fixed-target data

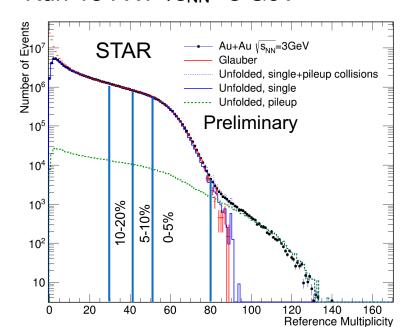
Helen Caines - BES and Beyond - LBNL (remote) - August 2021


Proton acceptance comparisons



Essential for proton fluctuations analyses

Data quality appears excellent



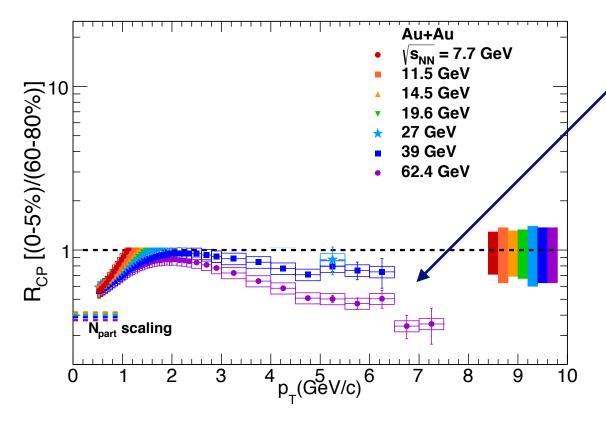
Heavy fragments up to ⁷Be

Tracks, on average, longer in FXT mode

→ enhanced dE/dx and 1/β resolutions

Techniques implemented to identify and reject "pile up" (present in FXT data mostly):

Enables accurate centrality definitions

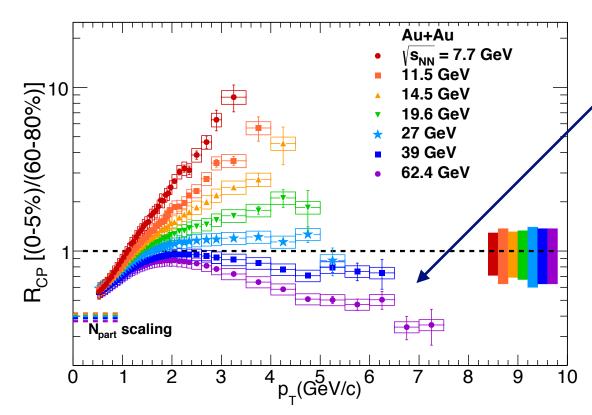

Dominance of QGP signal

Nuclear
$$R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \times \left\langle N_{coll} \right\rangle}$$
 Factor:

Average number of p-p collisions in A-A collision

Compare to scaled p-p at same collision energy

At higher beam energies
- clear signs of "jet
quenching" in the medium

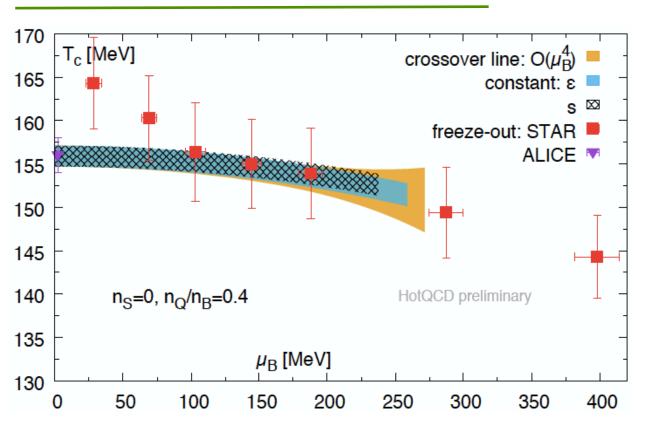

Dominance of QGP signal

Nuclear
$$R_{AA}(p_T) = \frac{Yield(A+A)}{Yield(p+p) \times \left\langle N_{coll} \right\rangle}$$
 Factor:

Average number of p-p collisions in A-A collision

Compare to scaled p-p at same collision energy

At higher beam energies
- clear signs of "jet
quenching" in the medium


"Standard" QGP signal only dominates above √s_{NN} ~ 20 GeV

Less jets, radial flow and other effects dominant at lower beam energies

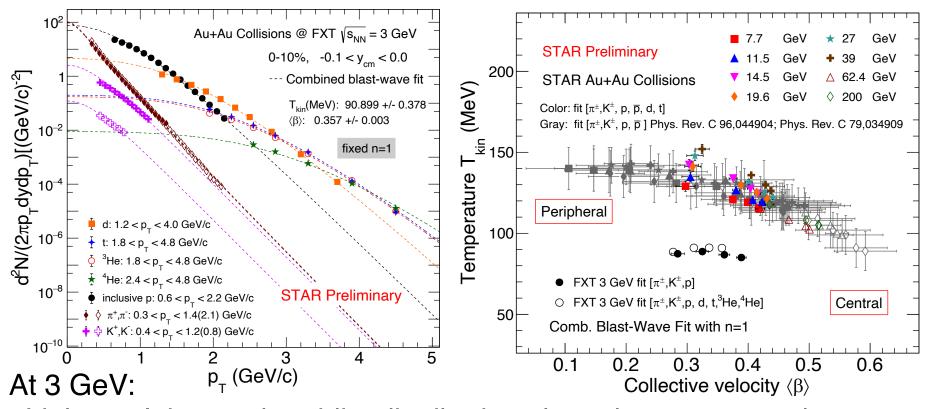
BES-II: Precision to disentangle?

Precision mapping of phase diagram

Theory: Cross-over starts at $T_0 = 156.5 (1.5) \text{ MeV}$ $\epsilon_0 \sim 1 \text{ GeV/fm}^3$

Significant systematic errors from BES-I data

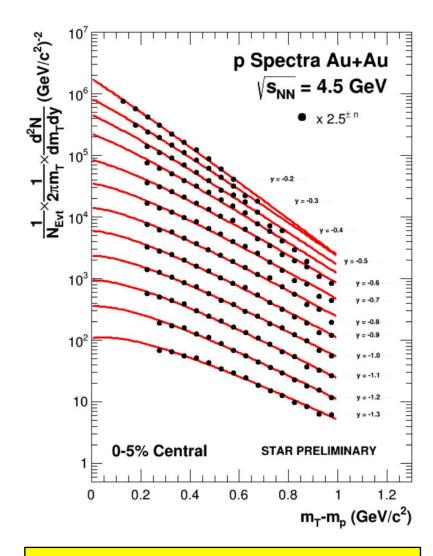
Now have BES-II and ~140 M top energy data with iTPC from Run-19


Reduce chemical fit uncertainty

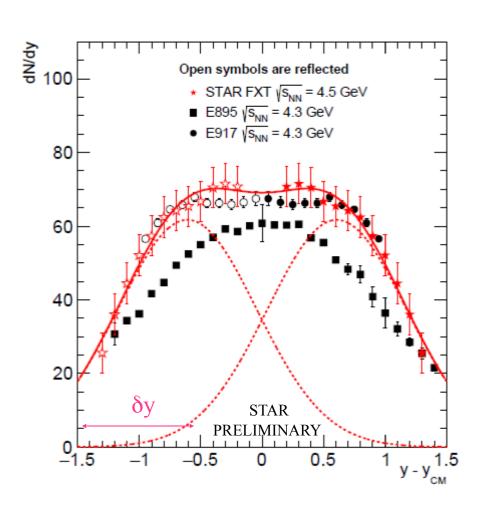
- smaller extrapolation, higher efficiency

Test Flow models at low p_T (<0.5 GeV/c) with heavy particles

Light nuclei and blast-wave fitting


Light nuclei p_T and rapidity distributions have been extracted Mid-rapidity blast-wave fits:

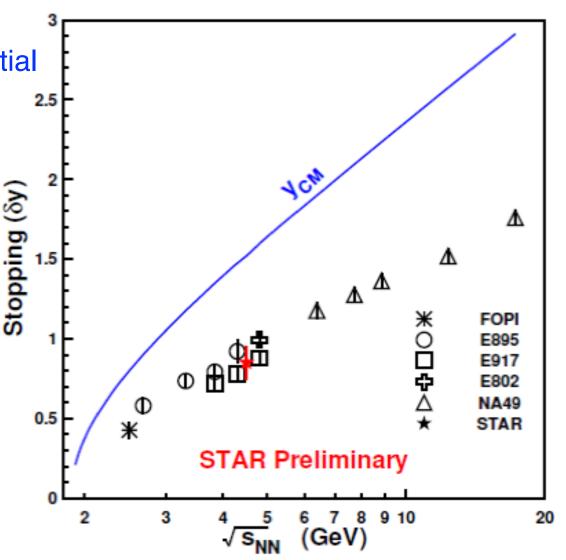
Light nuclei prefer slightly higher T_{kin} , lower β Combined fit to all particles successful


Different trend compared to higher √s_{NN} - different EoS at 3 GeV?

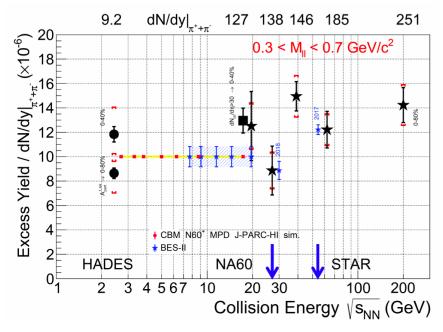
Beyond mid-rapidity p_T spectra

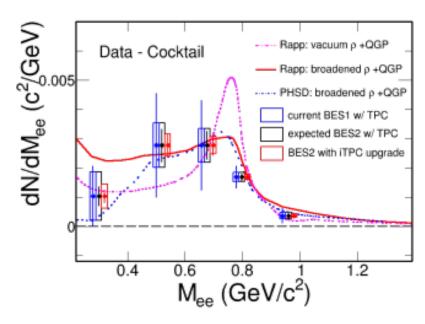
Better consistency with AGS E917 measurements

Baryon stopping systematics



May also reveal first order phase transition and softening of the EoS


Signal is a "wiggle" in the amount of stopping


Precision measurements possible with BES-II data

Change in total baryon number

Low Mass Region:

iTPC: Significant reduction in sys. and stat. uncertainties

Disentangle total baryon density effects

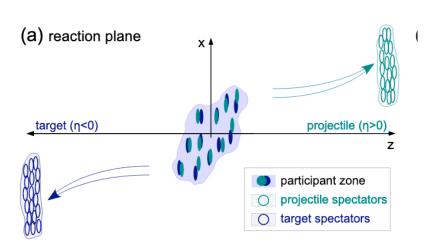
p-meson broadening:

different predictions for di-electron continuum (Rapp vs PHSD)

iTPC: Significant reduction in sys. and stat. uncertainties

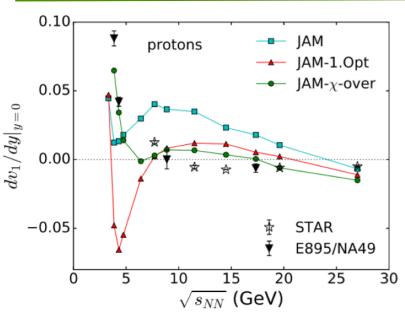
Enables to distinguish between models for √s_{NN} =7.7-19.6 GeV

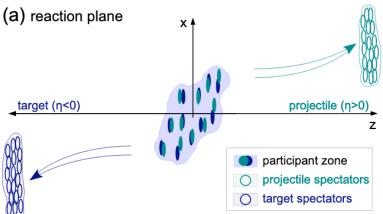
Softest point in equation of state?



Directed flow, v₁ - attributed to collective sidewards deflection of particles

$$v_1 = \langle \cos(\varphi - \Psi) \rangle$$


Symmetry of collision requires


$$v_1(\eta) = -v_1(-\eta)$$

Softest point in equation of state?

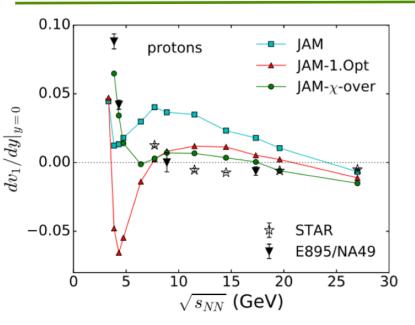
Directed flow, v₁ - attributed to collective sidewards deflection of particles

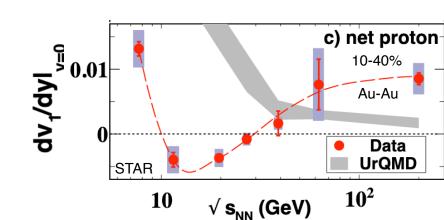
$$v_1 = \langle \cos(\varphi - \Psi) \rangle$$

Symmetry of collision requires

$$v_1(\eta) = -v_1(-\eta)$$

JAM 1.Opt: First order phase transition strong "wiggle"


JAM X-over - Cross over weaker "wiggle"


JAM - No transition no "wiggle"

Calculations predict minimum in slope of directed flow of baryons in presence of 1st order phase transition

Softest point in equation of state?

PRL **112** (2014) 162301

Y.Nara et al. PLB 769 (2017) 543 ALICE: PRL **111** (2013) 232302 Directed flow, v₁ - attributed to collective sidewards deflection of particles

$$v_1 = \langle \cos(\varphi - \Psi) \rangle$$

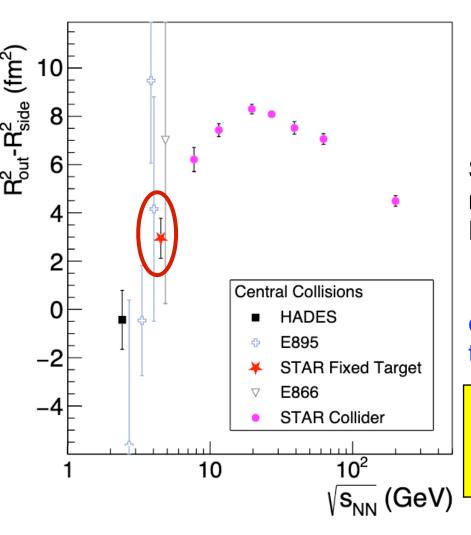
Symmetry of collision requires

$$v_1(\eta) = -v_1(-\eta)$$

JAM 1.Opt: First order phase transition strong "wiggle"

JAM X-over - Cross over weaker "wiggle"

JAM - No transition no "wiggle"


Calculations predict minimum in slope of directed flow of baryons in presence of 1st order phase transition

Net-proton isolates transported baryons: Double sign change in dv₁/dy around √s ~15 GeV

Evolution through phase transition?

Publication of first FXT data - 4.5 GeV

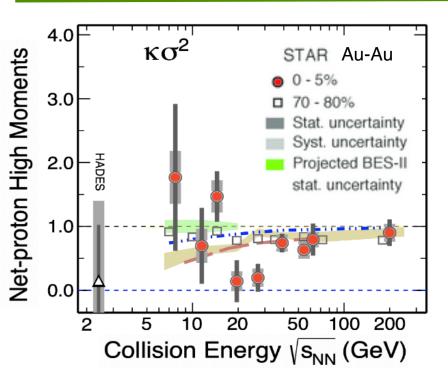
Interferometry:

R_{long} - Longitudinal size

R_{side} - Transverse size

R_{out} - Transverse size + emission duration

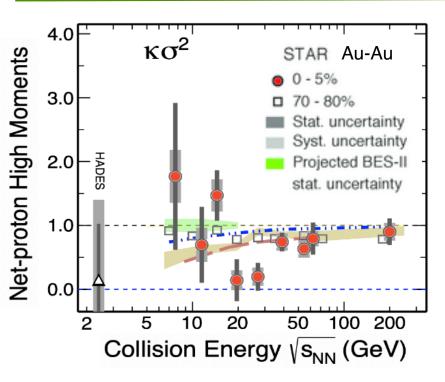
STAR data in combination with HADES results reveal long-sought peak in R²_{out}/R²_{side} beam energy dependence


- Such a peak may occur if system evolves through 1st order phase transition

The magnitude and width of structure **may** allow an estimate of latent heat of QCD deconfinement transition

- more theory input needed

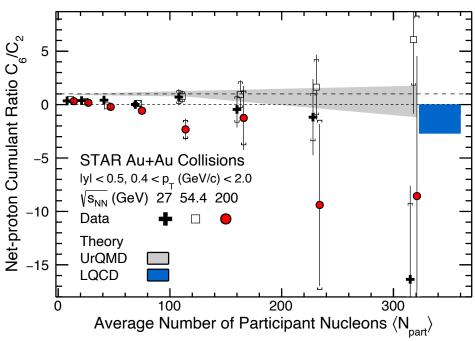
Hints of critical fluctuations



 κ/σ^2

BES-I: results published in PRL with details in PRC

Hints of critical fluctuations


First measurement of net-proton C₆/C₂ at RHIC

27 & 54.5: Consistent with zero 200: Negative in more

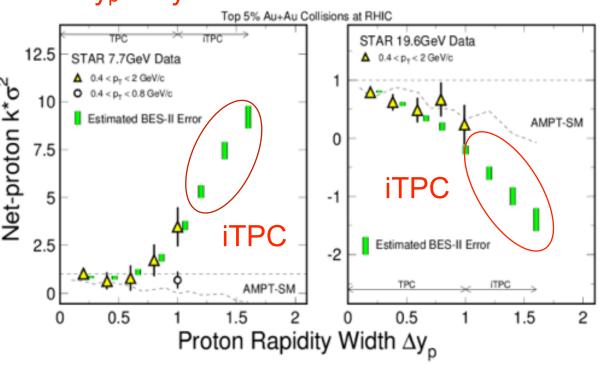
central collisions

PRL **126** (2021) 92301 PRC **104** (2021) 24902 arXiv:2105.14698 κ/σ^2

BES-I: results published in PRL with details in PRC

Suggestive of smooth cross-over at top RHIC energies

BES-II: Critical fluctuations


Current data: Suggestive of non-trivial √s dependence of net-proton cumulant ratios. Limited rapidity width range

iTPC:

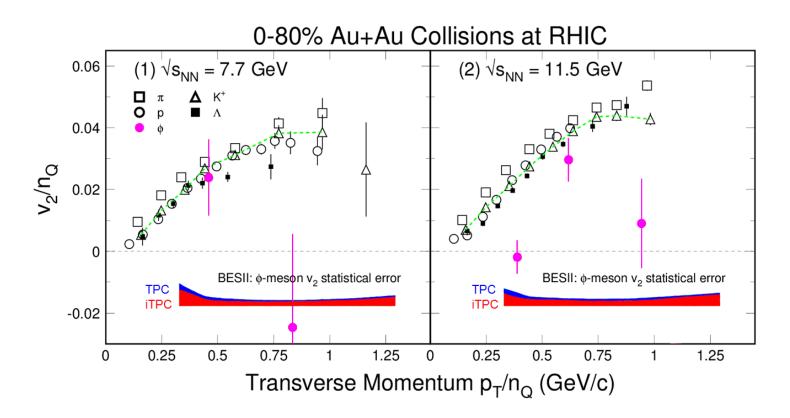
Increase Δy_p acceptance $\Delta y_p > \Delta y$ correlation

EPD:

Improved centrality selection
Use all TPC for measurement

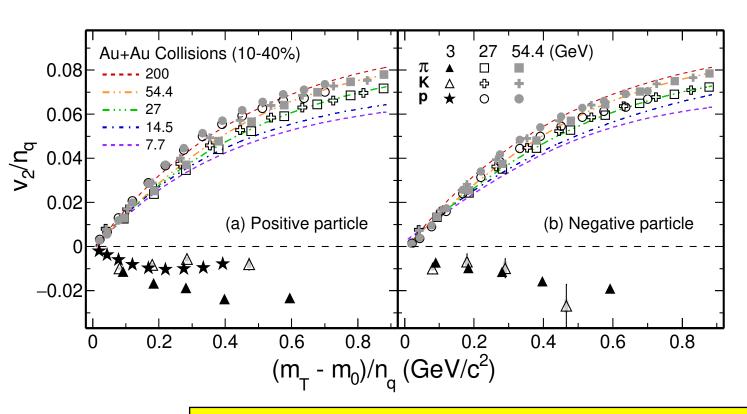
Establish true nature of correlation

BES-II: Plan to only release final results


Access to net-kaon also possible

BES-II: Quark coalescence via flow

How much collective motion from quark phase vs hadronic phase?


Use φ as probe - very small hadronic scattering cross-section

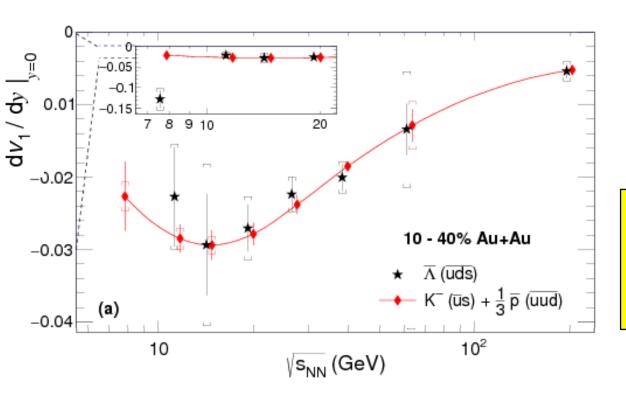
BES-II: Precision measurement of the φ (and other) flow

Disappearance of partonic collectivity

3 GeV 2018 data - First order EP from EPD

NCQ scaling not observed at $\sqrt{s_{NN}} = 3 \text{ GeV}$

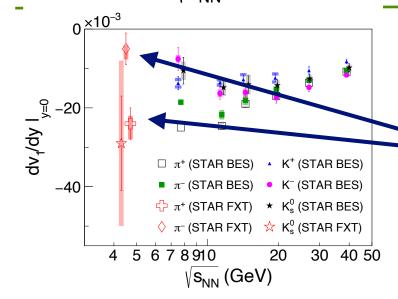
Particles and antiparticles no longer consistent with single-particle NCQ scaling as collision energy decreases


mixing of transported and produced quarks changing

Particle production via coalescence

Assumptions:

- v₁ is developed in prehadronic stage
- Hadrons are formed via coalescence: $(v_n)_{hadron} = \Sigma(v_n)_{constituent quarks}$
- $(v_1)_{\bar{\mathbf{u}}} = (v_1)_{\bar{\mathbf{d}}}$ and $(v_1)_{\mathbf{s}} = (v_1)_{\bar{\mathbf{s}}}$



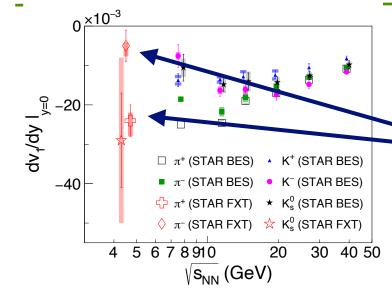
anti-A measured and predicted from quark values deduced from K and p

Quark coalescence sum run fails for 7.7 GeV -At least one assumption incorrect

(pre)BESNULL POW

~1.3M 0-30% - x10 more from BES-II

First π v₁ and v₂ results

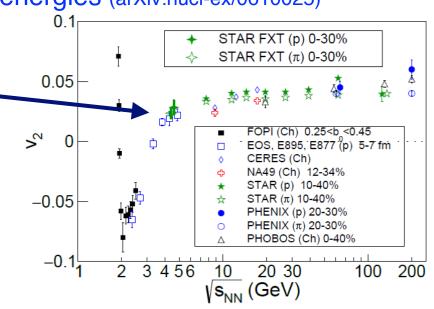

Difference in v_1 slope for π^+ and π^-

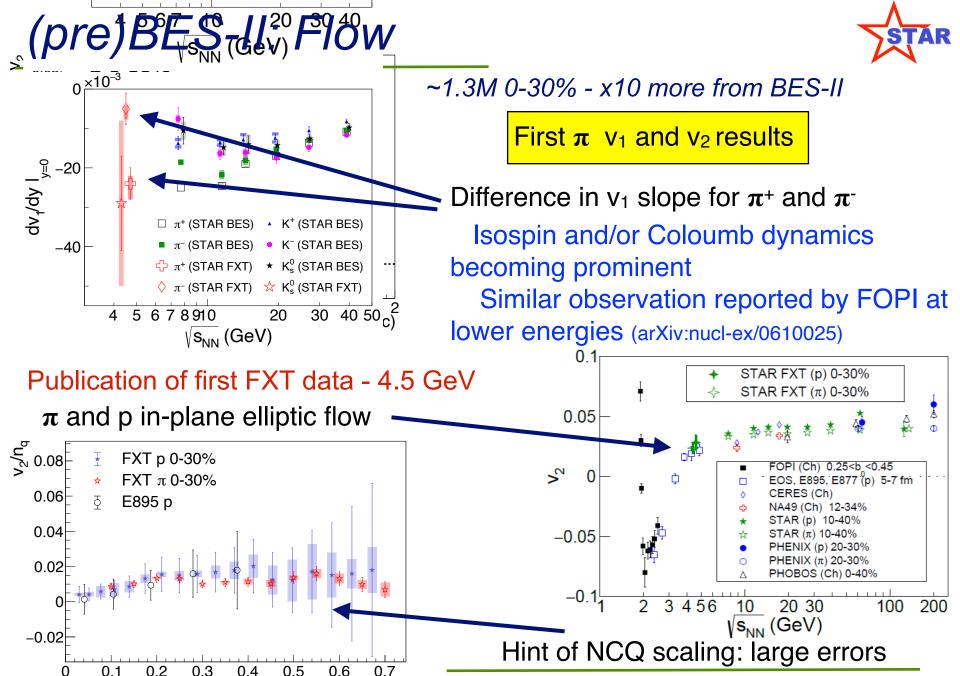
Isospin and/or Coloumb dynamics becoming prominent

Similar observation reported by FOPI at lower energies (arXiv:nucl-ex/0610025)

(pre)BES-UV)FIOW

~1.3M 0-30% - x10 more from BES-II

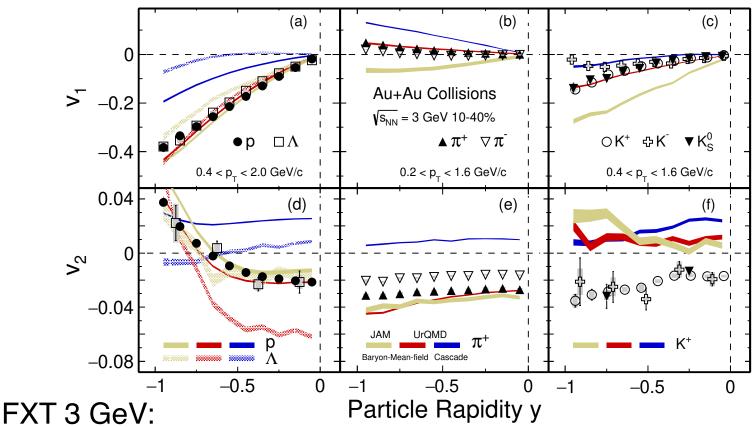

First π v₁ and v₂ results


Difference in v_1 slope for π^+ and π^-

Isospin and/or Coloumb dynamics becoming prominent

Similar observation reported by FOPI at lower energies (arXiv:nucl-ex/0610025)

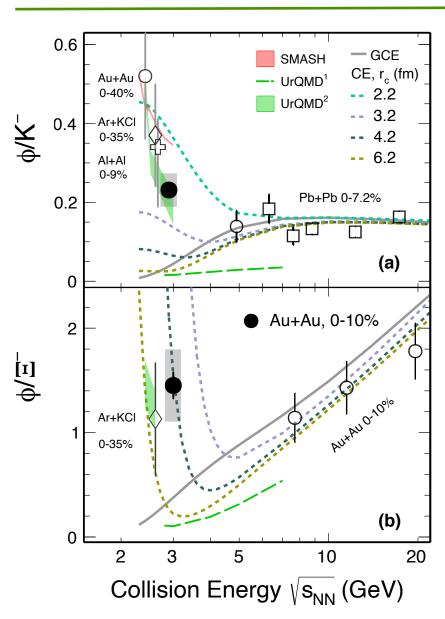
 $(m_{_{\!\scriptscriptstyle T}}-m_{_{\!\scriptscriptstyle 0}})/n_{_{\!\scriptscriptstyle \Omega}}$ [GeV]


E895 PRL 83 (1999) 1295

PRC 103 34908 (2021)

Helen Caines - BES and Beyond - LBNL (remote) - August 2021

Dominance of baryonic scatterings


v₂ out-of-plane for

Models including baryon mean-fields needed to describe data Kaons not well described

Baryonic not partonic interactions dominate

Probing (grand)canonical production

First multi-dimensional ϕ and Ξ measurements at $\sqrt{s_{NN}} = 3 \text{ GeV}$

p_⊤ and rapidity spectra reported

Collision energy:
below threshold for Ξ
very close to threshold for Φ

Local treatment of strangeness conservation crucial at lower √s_{NN}

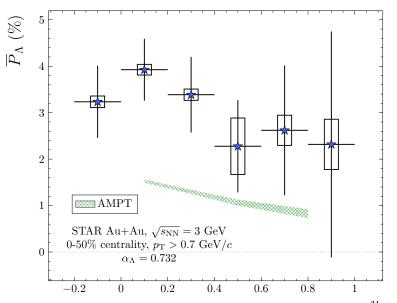
Small strangeness correlation radius preferred, $r_c \le 4.2$ fm

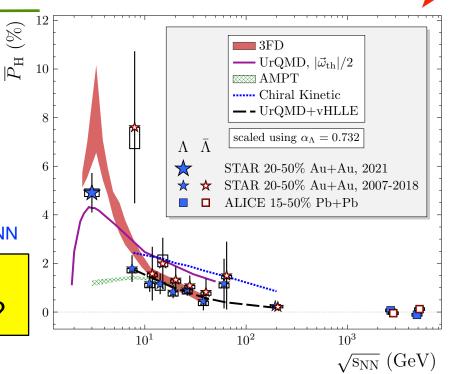
CE cannot simultaneously describe φ/K– and φ/Ξ– ratios (also noted by HADES)

Polarization seen even at 3 GeV

3FD:

Approximate agreement

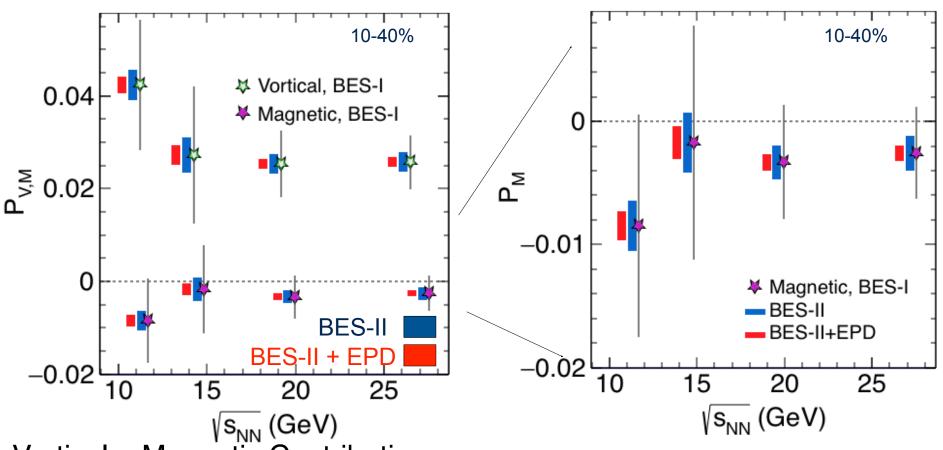

UrQMD:


Approximate agreement at low √s_{NN} Over-estimates higher √s_{NN}

AMPT:

Dramatic underprediction at low √s_{NN}

Formation of vortical flow not dependent on presence of QGP?


No statistically significant dependence observed

- Measurements out to beam rapidity

Forward upgrade should yield interesting results

Access to initial B-field

Vortical + Magnetic Contributions:

Current data barely stat. significant

EPD:

Improved EP resolution

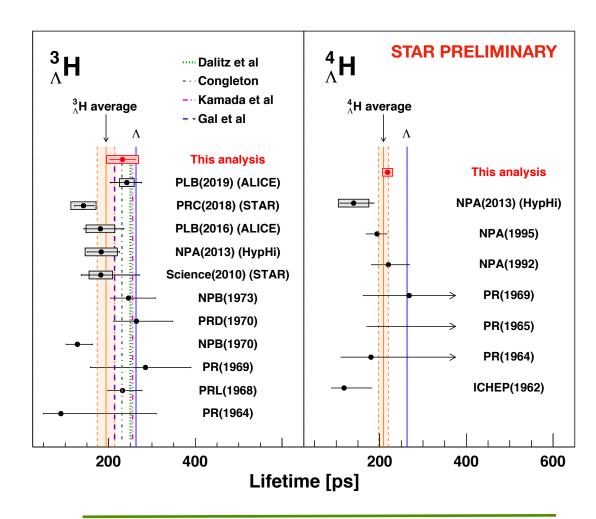
BES-II: >3σ effect

Unique measurement of B field

Hypernuclei lifetime

Hypernuclei - probe hyperon-nuclei interaction Lifetimes, Binding energies, branching ratios

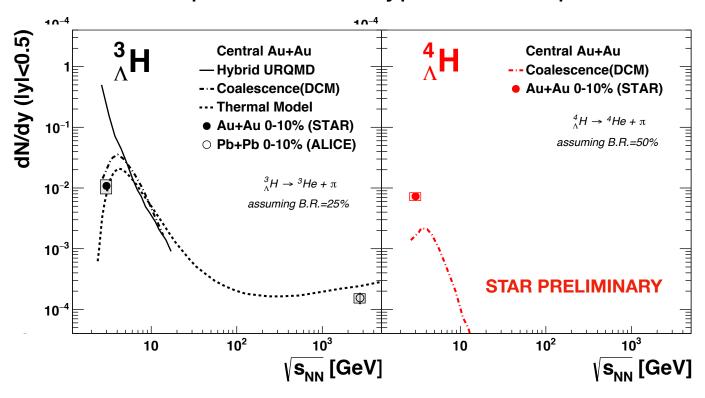
Lifetimes from 3 GeV data Λ :


$$265.0 \pm 2.2 \text{ ps}$$
 (PDG $263.1 \pm 2.0 \text{ ps}$)

 $^3\Lambda$ H:

Consistency with previous results

 $^4\Lambda$ H:


Most precise measurement to date Consistency with previous results

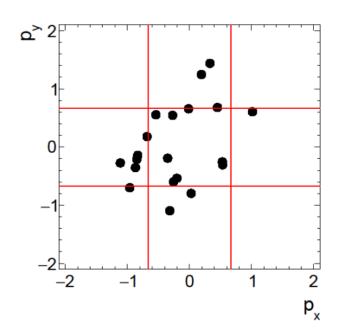
Hypernüclei yields

Significant increase in production of hypernuclei expected

 10^{-2}

Canonical ensemble thermal model (GSI-Heidelberg) describes ³_AH

P Coalescence descripes ³_ΛH but not ⁴_ΛH


BES-II: mære energies, heavier hypeanuclei, S=2 hypernuclei, and differential results to come

Charged particle intermittency

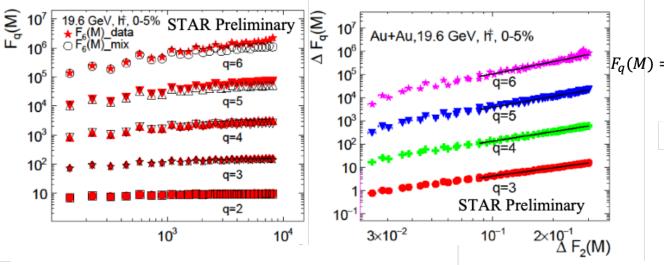
Intermittency analysis in p_T space - measure scaled factorial moments Probes local **density fluctuations** and long range correlations near CP

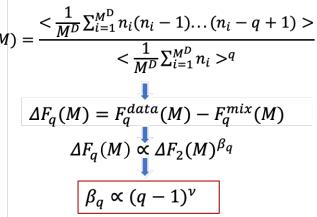
 $F_q(M)$ - scaled factorial moment n_i - particle multiplicity in i^{th} cell M^D - number of equal-size cells in which D-dimensional space is partitioned q - order of moment

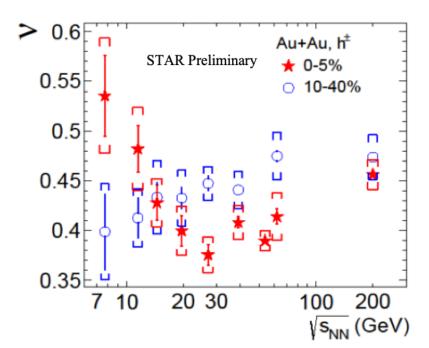
$$F_q(M) = \frac{\langle \frac{1}{M^D} \sum_{i=1}^{M^D} n_i (n_i - 1) \dots (n_i - q + 1) \rangle}{\langle \frac{1}{M^D} \sum_{i=1}^{M^D} n_i \rangle^q}$$

v specifies scaling behavior

Energy dependence of v could be used to search for signature of CP


$$\Delta F_q(M) = F_q^{data}(M) - F_q^{mix}(M)$$


$$\Delta F_q(M) \propto \Delta F_2(M)^{\beta_q}$$


$$\beta_q \propto (q-1)^{\nu}$$

Charged particle intermittency

Scaling exponent exhibits a non-monotonic energy dependence in central Au+Au collisions minimum around = 20-30 GeV.

More theory input needed

BES-II: higher statistics enable centrality study

Summary

Excellent performance from RHIC and STAR

All requested BES-II data collected and more - 17 unique energies from 3-200 GeV with some overlapping Collider and FXT energies

BES-II upgrades performing at or above expectations

Precision analyses ongoing with very well understood detector

- first results submitted

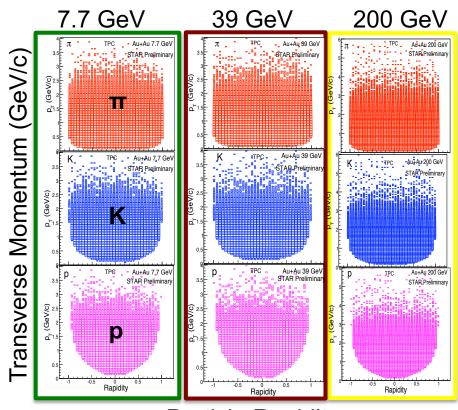
New ideas developed since original proposal: vorticity, hypernuclei...

Last chance to answer these critical HI questions at RHIC

Next steps

Run-22-25 - pp at 500 GeV, Au-Au, pp and p+Au at 200 GeV

Exciting physics program enabled by BES-II and Forward Upgrades collection of RHIC legacy data prior to EIC


BACK UP

st Beam Energy Scan (BES-I)

Au+Au Collisions									
(G <u>§</u> ⁄000 √s ^{NN}	Events 2386)	Year *µ _B 2010 (12€√)	*T _{CH} (M��						
200	²³ 8 ₆	²⁰¹⁰ 2010 ²⁵ 73	¹⁶⁶ 165						
62. <u>4</u> 54.4	⁴⁶ 1200	²⁰¹⁰ 2017 ⁷³ 83	¹⁶⁵ 165						
54. <u>4</u> .39	1200	²⁰¹⁷ 2010 ⁸³ 112	¹⁶⁵ 164						
³⁹ 27	⁸⁶ 30	²⁰¹⁰ 2011 ¹¹² 156	¹⁶⁴ 162						
²⁷ 19.6	³⁰ 15	²⁰¹¹ 156 2011 206	¹⁶² 160						
19.64.5	1513	20 ½ 1 ₁ 420 ½ 64	16056						
14.5 11.5	13 ₇	²⁰¹⁴ 2010 ²⁶⁴ 31	156 ₁₅₂						
11. 5 .7	7 3	²⁰¹⁰ 2010 ³¹⁵ 42	152 140						
7.7	3	2010 420	140						

Particle Rapidity

Designed to have roughly equal μ_B step sizes from $\sqrt{s_{NN}} = 200 - 7$ GeV

Collider mode of operation + STAR detector design - uniform acceptance around mid-rapidity

Projecting 7.7 GeV run time

Collision Energy (GeV)	7.7	9.2	11.5	14.6	17.1	19.6	27
Performance in BES-I	2010	NA	2010	2014	NA	2011	2011
Good Events (M)	4.3	NA	11.7	12.6	NA	36	70
Days running	19	NA	10	21	NA	9	8
Data Hours per day	11	NA	12	10	NA	9	10
Fill Length (min)	10	NA	20	60	NA	30	60
Good Event Rate (Hz)	7	NA	30	23	NA	100	190
Max DAQ Rate (Hz)	80	NA	140	1000	NA	500	1200
Performance in BES-II							
(achieved $)$	2021	2020	2020	2019	2021	2019	2018
Required Number of Events	100	160	230	300	250	400	NA
Achieved Number of Events	2.9	162	235	324	TBD	582	560
fill length (min)	20 - 45	45	${\bf 25}$	45	50	60	120
Good Event Rate (Hz)	16-24	33	80	170	265	400	620
Max DAQ rate (Hz)	400	700	550	800	1300	1800	2200
Data Hours per day	12 - 15	13	13	9	15	10	9
Projected number of weeks	11-20	8.5-14	7.6-10	5.5	2.5	4.5	NA
weeks to reach goals	TBD	14.6	* 8.9	8.6	TBD	5.1	4.0

Below injection energy luminosity scales well with γ^3

Rescaled running times in agreement with lower-middle end of projections

7.7 GeV projections 11-20 (~28-CAD) weeks optimistic/pessimistic assumptions

^{*}Running with significant LEReC

^{**}Run-20b running

Projecting 7.7 GeV run time

Collision Energy (GeV)	7.7	9.2	11.5	14.6	17.1	19.6	27	
Performance in BES-I	2010	NA	2010	Dun 2	0h 7 -	7 GoV	runni	na ovor
Good Events (M)	4.3	NA	11.7					ng over
Days running	19	NA	10	holiday weekend reached a				
Data Hours per day	11	NA	12	good event rate average of 16				
Fill Length (min)	10	NA	20			_		
Good Event Rate (Hz)	7	NA	30	112 41	•			ady or
Max DAQ Rate (Hz)	80	NA	140	data taking!!				
Performance in BES-II								
(achieved $)$	2021	2020	2020	2019	2021	2019	2018	
Required Number of Events	100	160	230	300	250	400	NA	
Achieved Number of Events	2.9	162	235	$\bf 324$	TBD	582	560	
fill length (min)	20 - 45	45	25	45	50	60	120	
Good Event Rate (Hz)	16-24	33	80	170	265	400	620	
Max DAQ rate (Hz)	400	700	550	800	1300	1800	2200	
Data Hours per day	12 - 15	13	13	9	15	10	9	
Projected number of weeks	11-20	8.5-14	7.6-10	5.5	2.5	4.5	NA	
weeks to reach goals	TBD	$14.6^{\color{red} imes}$	* 8.9	8.6	TBD	5.1^{*}	4.0	

Below injection energy luminosity scales well with γ^3

Rescaled running times in agreement with lower-middle end of projections

7.7 GeV projections 11-20 (~28-CAD) weeks optimistic/pessimistic assumptions

^{*}Running with significant LEReC

^{**}Run-20b running

Event statistics requirements: Collider

Table 7: Event statistics (in millions) needed in the collider part of the BES-II program for various observables. This table updates estimates originally documented in STAR Note 598.

Collision Energy (GeV)	7.7	9.1	11.5	14.5	19.6
$\mu_{\rm B}$ (MeV) in 0-5% central collisions	420	370	315	260	205
Observables					
R_{CP} up to $p_{\rm T}=5~{ m GeV}/c$	-	-	160	125	92
Elliptic Flow (ϕ mesons)	80	120	160	160	320
Chiral Magnetic Effect	50	50	50	50	50
Directed Flow (protons)	20	30	35	45	50
Azimuthal Femtoscopy (protons)	35	40	50	65	80
Net-Proton Kurtosis	70	85	100	170	340
Dileptons	100	160	230	300	400
$>5\sigma$ Magnetic Field Significance	50	80	110	150	200
Required Number of Events	100	160	230	300	400

Typically factor 20 more than for BES-I

Event statistics requirements: FXT

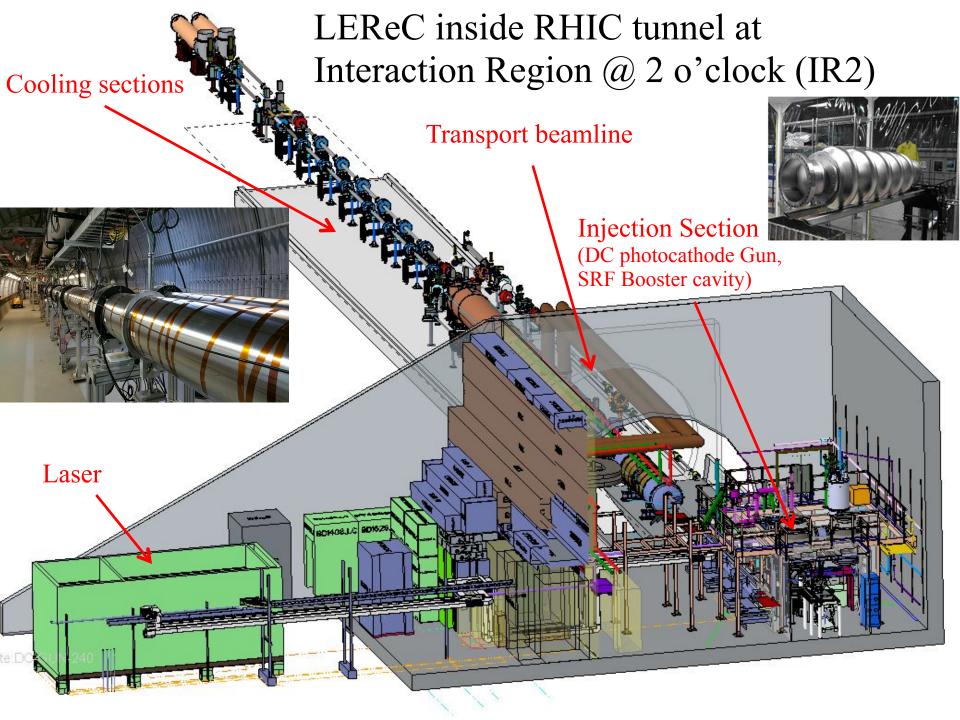
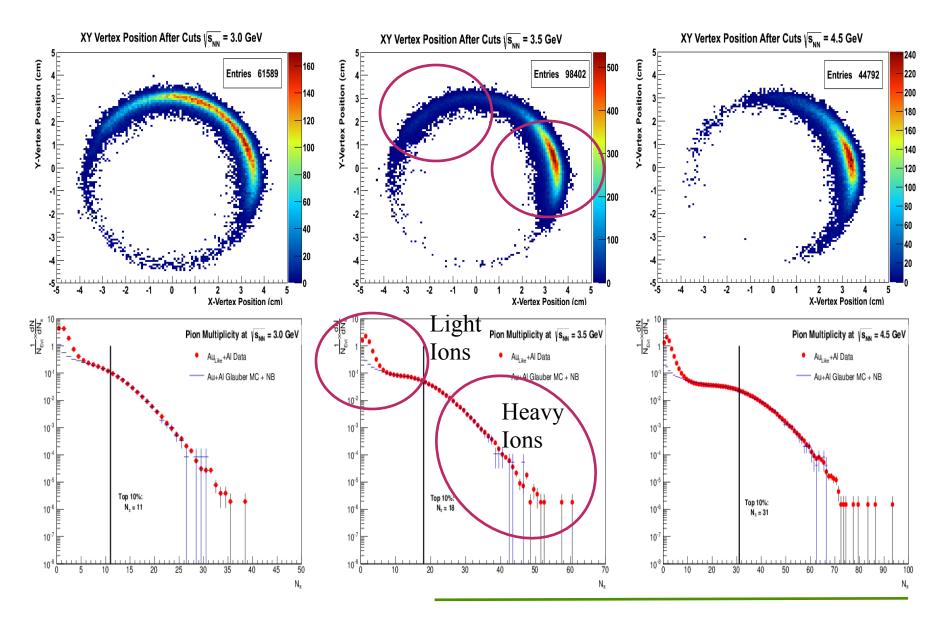


Table 8: Event statistics (in millions) needed in the fixed-target part of the BES-II program for various observables.

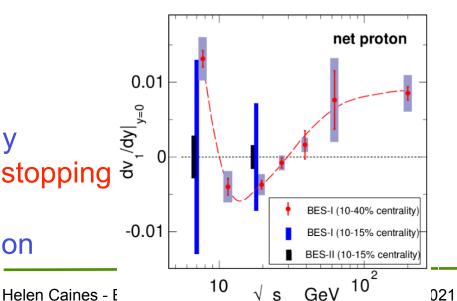
$\sqrt{s_{NN}} \; (\text{GeV})$	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7
Single Beam Energy (GeV)	3.85	4.55	5.75	7.3	9.8	13.5	19.5	31.2
$\mu_{ m B} \; ({ m MeV})$	721	699	666	633	589	541	487	420
Rapidity y_{CM}	1.06	1.13	1.25	1.37	1.52	1.68	1.87	2.10
Observables								
Elliptic Flow (kaons)	300	150	80	40	20	40	60	80
Chiral Magnetic Effect	70	60	50	50	50	70	80	100
Directed Flow (protons)	20	30	35	45	50	60	70	90
Femtoscopy (tilt angle)	60	50	40	50	65	70	80	100
Net-Proton Kurtosis	36	50	75	125	200	400	950	NA
Multi-strange baryons	300	100	60	40	25	30	50	100
Hypertritons	200	100	80	50	50	60	70	100
Requested Number of Events	300	100	100	100	100	100	100	100



Beam E _T (GeV)	Beam E _k (AGeV)	Beam p _Z (GeV/c)	Rapidity y _{Beam}	√s _{nn} (GeV)	Rapidity y _{CM}	Ch. Pot.
3.85	2.92	3.73	2.10	3.0	1.05	721
4.59	3.66	4.50	2.28	3.2	1.13	699
5.75	4.82	5.67	2.51	3.5	1.25	666
7.3	6.4	7.25	2.75	3.9	1.37	633
9.8	8.9	9.44	3.04	4.5	1.52	589
13.5	12.6	13.5	3.37	5.2	1.68	541
19.5	18.6	19.5	3.73	6.2	1.87	487
26.5	25.6	26.5	4.04	7.2	2.02	443
31.2	30.3	31.2	4.20	7.7	2.10	420
44.5	43.6	44.5	4.56	9.2	2.28	372
70	69.1	70	5.01	11.5	2.51	316
100	99.1	100	5.37	13.7	2.69	276

Beam Halo on Al Vacuum Pipe

BES-II: Directed Flow Improvements

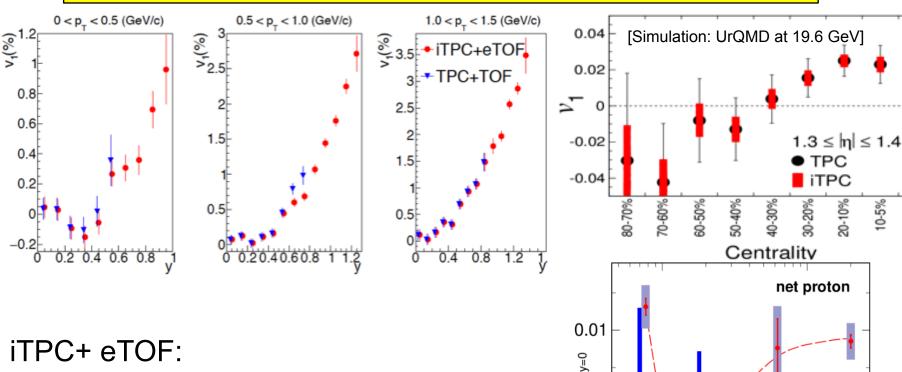

Current data: Double sign change of v₁

Precision measurement of dv₁/dy as function of centrality

iTPC+ eTOF:

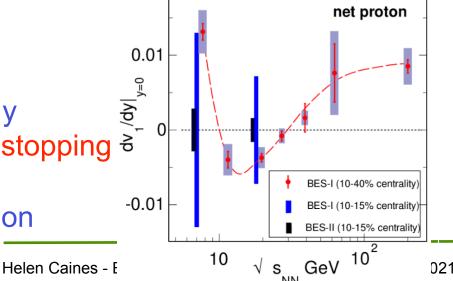
Enhanced coverage at forward y
Signal larger - role of baryon stopping
EPD:

Enhanced 1st order EP resolution Reduced systematics



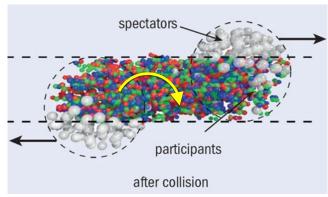
BES-II: Directed Flow Improvements

Current data: Double sign change of v₁


Precision measurement of dv₁/dy as function of centrality

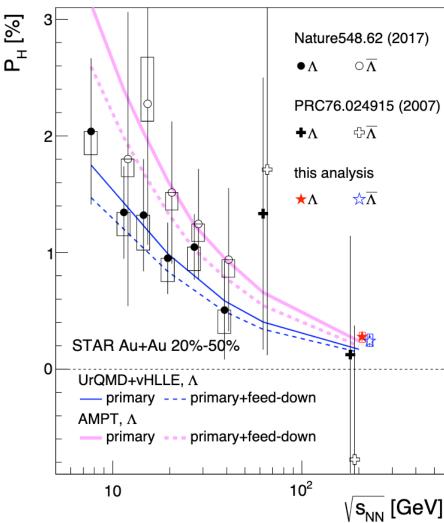
Enhanced coverage at forward y
Signal larger - role of baryon stopping
EPD:

Enhanced 1st order EP resolution


Reduced systematics

The spinning QGP

 $|J| \sim 1000 \hbar$ in peripheral collisions


Sheer forces in fluid lead to vorticity

Spin-orbit coupling: polarization along direction of vorticity & J

$$\omega = k_B T \left(\overline{P}_{\Lambda'} + \overline{P}_{\overline{\Lambda}'} \right) / \hbar,$$

 $\sqrt{\text{s}_{\text{NN}}}$ -averaged $\omega \approx (9\pm 1) \times 10^{21} \text{s}^{-1}$

Expected strong B-field coupled to magnetic moment of particles
Affects particle and anti-particle differently

$$P_{EM} = \frac{1}{2}(P_{\Lambda} - P_{\bar{\Lambda}})$$