The XXVth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions

Measurements of Quarkonium Polarization and Production versus Charged-Particle Multiplicity in p+p Collisions at √s = 500 GeV in the STAR experiment

QUARK MATTER 2015

Barbara Trzeciak for the STAR Collaboration Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Quark Matter 2015 September 27 – October 3, 2015 Kobe, Japan

Quarkonia in p+p collisions

- **Quarkonium Production mechanism** in elementary collisions is not fully understood
 - Color singlet vs color octet intermediate state

> **Different models on the market:**

- Color Singlet Model
- Color Evaporation Model
- NRQCD approach applicable at high p_T
- CGC+NRQCD applicable at low p_{T}

Feed-down

Inclusive J/ ψ production:

- **prompt J/ψ**
 - direct J/ ψ (~60%), feed down from ψ (2S) (~10%) and χ_c (~30%) decays
- non-prompt J/ψ: B-mesons feed-down (10-25% at 4-12 GeV/c, STAR: Phys. Lett. B722 (2013) 55)

Measurements of quarkonium production and polarization - tests of different production models, help to understand QCD

Quarkonia in the STAR Experiment $J/\psi / \Upsilon \rightarrow e^+ e^-, \mu^+ \mu^ 0 < \phi < 2\pi$ e: |η| < 1, *μ*: |η| < 0.5 VPD - minimum bias trigger - TPC tracking MTD - tri **PID: dE/dx** on muon TOF - time improve BEMC - PID: E/p resolution < 100 ps<u>low-p</u> J/ψ

trigger on electron high-p_T J/ψ

PID: 1/β

J/Ψ production in p+p 500 GeV

114001, JHEP 1505 (2015) 103 and private communication Kuang-Ta Chao, Hao Han, Hua-Sheng Shao

$J/\Psi x_{\tau}$ scaling in p+p collisions

 $x_{_{\rm T}}$ scaling observed in STAR at 200 and 500 GeV

 $x_T = 2p_T / \sqrt{s}$ $\frac{d^2 \sigma}{2\pi p_T dp_T dy} = g(x_T) / (\sqrt{s})^n$

- ✓ $p_T > 5$ GeV/c J/ ψ production follows the x_T scaling of cross-section at mid-rapidity, with n ~ 5.6
 - → x_T scaling breaking transition from hard to
 soft process

Phys. Rev. C 80, 041902 (2009)

n – number of constituents taking an active role in hadron production

Quarkonium production vs. event activity TAR

In high energy proton-proton collisions Multi-Parton Interactions (MPI) may be important on a hard scale. At LHC correlation between quarkonium production and event activity has been observed.

MPI? String screening? or ?

J/Ψ production vs. event activity

- \Rightarrow STAR observes correlation between relative J/ ψ yield and relative event multiplicity at 500 GeV
- At higher multiplicities stronger than linear growth at $p_{\tau} > 4$ GeV/c
 - Hint of p_{T} dependence

J/Ψ production vs. event activity

- \Rightarrow STAR observes correlation between relative J/ ψ yield and relative event multiplicity at 500 GeV
- At higher multiplicities stronger than linear growth at $p_{T} > 4$ GeV/c
 - Hint of p_{T} dependence
 - Similar trend at LHC for J/ ψ and open charm production

J/Ψ production vs. event activity - models stAR

- Correlation between relative J/ ψ yield and relative event multiplicity

→ Possible explanations:

- Multiple parton-parton interactions *PYTHIA 8*
 - → Default Pythia tune, $p_T dependence$
- String screening *percolation model* – quadratic dependence at high multiplicities
 - → PRC 86 (2012) 034903, and private communication
- Hadronic activity associated with J/ ψ production

- Percolation Model and PYTHIA8 (in two $p_{\rm T}$ bins) can describe the observed correlation

 In order to distinguish between the models measurements need to be extended to higher event activity bins – in progress

J/Ψ polarization

- \cdot Polarization provides further constraints on J/ ψ production models
 - Similar production cross-sections but different production mechanisms in competing theoretical approaches lead to different polarization
 - CSM vs different NRQCD calculations

 J/ψ polarization can be analyzed via the angular distribution of the decay lepton pair:

 $\frac{d\sigma}{d(\cos\theta)d\phi} \propto 1 + \lambda_{\theta}\cos^2\theta + \lambda_{\theta\phi}\sin(2\theta)\cos\phi + \lambda_{\phi}\sin^2\theta\cos(2\phi)$

- θ polar angle between momentum of a positive lepton in the J/ ψ rest frame and the polarization axis *z*
- ϕ corresponding azimuthal angle

Polarization z axis:

- *Helicity (HX) frame*: along the J/ψ momentum in the center of mass of the colliding beams
- *Collins-Soper (CS) frame*: bisector of the angle formed by one beam direction and the opposite direction of the other beam in the J/ψ rest frame

Polarization parameters

J/Ψ polarization in p+p 200 and 500 GeVstAR

λ_{θ} parameter in HX frame

- Similar trend observed in 500 and 200 GeV p+p collisions
- P RHIC data indicate trend towards longitudinal polarization with increasing p_{T}
- → Measurement extended to higher p_T range, 5 < p_T < 16 GeV/c, with new 500 GeV data

PHENIX: Phys. Rev. D 82, 012001 (2010) STAR 200 GeV: Phys.Lett. B739 (2014) 180

J/W polarization vs model predictions

λ_{θ} parameter in HX frame

<u>200 GeV</u>

STAR:Phys.Lett. B739 (2014) 180

Consistency with NLO+ CSM prediction

<u>500 GeV</u>

STAR data can help to constrain
 color-octet Long-Distance Matrix
 Elements for the NLO NRQCD

→ Predictions that can describe cross-sections well have little prediction power for the polarization – input from data needed

λ_{θ} parameter in HX frame

 $x_T = 2p_T/\sqrt{s}$

- → Common trend towards strong negative values with increasing x_{τ}
- $\Rightarrow x_{T}$ scaling of cross-section at $p_{T} > 5$ GeV/c

λ_{o} and λ_{inv} parameters in HX frame

 No strong azimuthal anisotropy observed in the HX frame

→ Negative values of the frame invariant λ_{inv} parameter

J/Ψ polarization in CS frame

- → Different values of the λ_{θ} and λ_{ϕ} polarization parameters in the CS frame
- → Frame invariant parameters, λ_{inv} , consistent in both frames
- → Trend towards longitudinal polarization with increasing p_T

Summary

✓ J/ψ p_T spectra at \sqrt{s} = 200 and 500 GeV measured, can be described well by NRQCD predictions

 \checkmark Increase of relative J/ ψ yield with relative charged-particle multiplicity in p+p at \sqrt{s} = 500 GeV

- Stronger than linear rise at higher multiplicities at $p_T > 4 \text{ GeV/c}$
- → PYTHIA8 and Percolation Model can describe the observed increase
- Similar trend as observed at LHC
- Longitudinal J/ ψ polarization in HX frame at \sqrt{s} = 200 and 500 GeV
 - No strong azimuthal anisotropy observed
 - x_{T} dependence of λ_{θ} observed
- Frame invariant parameters agree in HX and CS frames at \sqrt{s} = 500 GeV
- ` Data will help to constrain J/ ψ production models
- Υ analysis of cross-section at 500 GeV and relative yield vs event activity in progress – see Leszek Kosarzewski poster 0613

Thank you !

$J/\Psi p_{\tau} spectrum in p+p 200 GeV$

Test of different production models

- <u>NNLO* CS,</u> direct production, misses high-p_T part
- ✓ <u>CEM</u>, prompt production, can reasonably well describe the p_{T} spectra

 <u>NLO NRQCD</u>, prompt production, describes the data for $p_{\tau} > 4$ GeV/c

STAR EMC : Phys. Lett. B 722 (2013) 55 STAR MB: Acta Phys. Polonica B Vol.5, No 2 (2012), 543

$J/\Psi p_{T}$ spectrum in p+p 200 GeV

Test of different production models

- ✓ <u>NNLO* CS</u>, direct production, misses high-p_T part
- ✓ <u>CEM</u>, prompt production, can reasonably well describe the p_T spectra

- ✓ <u>NLO NRQCD</u>, prompt production, describes the data for p_T > 4 GeV/c
- ✓ <u>CGC + NRQCD</u>, describes the data in the full p_{T} range

J/Ψ production mechanism - CSM

STAR

Comparison of CSM to RHIC data

Ψ(2S) in p+p 500 GeV

• Constrain $\psi(2S)$ feed-down contribution to inclusive J/ ψ production

✓ First measurement of ($\psi(2S)$ / J/ ψ) ratio in p+p at 500 GeV

- Consistent with other experiments
- No collision energy dependence observed

B -> J/Ψ fraction in p+p 200 GeV

 Measurement based on azimuthal angular correlations between highp_T J/ψ and charged hadrons

- → B-hadron feed-down contribution: 10-25%, in the range 4 < p_T < 12 GeV/c
- Agreement with
 FONLL + CEM prediction

B -> J/Ψ fraction in p+p 200 GeV

Measurement based on azimuthal angular correlation between high-p_T
 J/ψ and charged hadrons

- → B-hadron feed-down contribution: 10-25%, in the range 4 < p_T < 12 GeV/c
- Agreement with
 FONLL + CEM prediction
 and with measurements
 from other experiments

