Quarkonia in the STAR experiment

Barbara Trzeciak for the STAR Collaboration Czech Technical University in Prague

3rd International Conference on New Frontiers in Physics 28 July - 6 August, 2014 Kolymbari, Crete, Greece

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Quarkonia at RHIC - Motivation

- color screening quarkonium suppression in QGP in heavy-ion collisions
- *QGP thermometer* suppression of different states is determinated by T_c and their binding energies

Quarkonia - other effects

But there are additional complications:

- Still unclear production mechanism in elementary collisions
- Feed-down: direct J/ψ (~60%), feed down from ψ' and χc
 (~40%); B-mesons feed-down (up to 25% at 12 GeV/c, Phys. Lett. B722 (2013)
 55)
- Cold Nuclear Matter (CNM) effects nuclear (anti-)shadowing, Cronin effect, nuclear absorption, ...
- Other Hot Nuclear Matter effects regeneration, ...

Strategy

> **High-p_T J/\Psi and \Upsilon - cleaner probes**

- ✓ High-p_T J/ψ almost not affected by CNM effects and recombination
- Υ negligible co-mover absorption and recombination at RHIC: σ_{cc} ~800µb >> σ_{bb} ~(1-2)µb
- Energy dependence of quarkonium production - varying relative contributions

STAR

STAR

$J/\Psi v_2$ in Au+Au 200 GeV

 Disfavors the model with J/ψ production via thermalized (anti-)charm coalescence

$J/\Psi v_2$ and p_T spectra in Au+Au 200 GeV_{STA}

- ✓ J/ ψ v₂ is consistent with zero at p_T > 2 GeV/c
 - → Disfavors the model with J/ψ production via thermalized (anti-)charm coalescence

- At low p_T J/ψ spectra softer than the TBW prediction from light hadron
 - small radial flow ?
 - regeneration at
 low p_T
 ?

$J/\Psi R_{AA}$ in Au+Au 200 GeV

STAR high-p_T : Phys. Lett. B 722 (2013) 55 STAR low-p_T : arxiv:1310.3563

Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905

~

- Suppression increases with collision centrality
- ✓ High-p_T R_{AA} is systematically higher

I/ψ at high-p_T almost not affected by CNM effects and recombination

- High-p_T J/ ψ suppressed in central collisions
 - → May indicate QGP **effects**

$J/\Psi R_{AA}$ in Au+Au 200 GeV

- Suppression increases with collision centrality
- ✓ High-p_T R_{AA} is systematically higher
- High-p_T J/ψ suppressed in central collisions
 - May indicate QGP effects

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563 Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905

 Both models – color screening + statistical regeneration describe the data well at low p_T

$J/\Psi R_{AA}$ in Au+Au 200 GeV

- Suppression increases with collision centrality
- ✓ High-p_T R_{AA} is systematically higher
- High-p_T J/ψ suppressed in central collisions
 - May indicate QGP effects

STAR high- p_T : Phys. Lett. B 722 (2013) 55 STAR low- p_T : arxiv:1310.3563 Y.Liu et al., Nucl. Phys A 834 (2010) 317c Zhao, Rapp, Phys. Rev. C 82 (2010) 064905

 At high p_T Liu et al. model describes the data well, while Zhao et. al model underpredicts the R_{AA}

Energy dependence of J/\Psi R_{AA}

- Significant suppression at 62.4 and 39 GeV, similar to 200 GeV
 - no strong energy dependence of J/ ψ R_{AA} within uncertainties
- Data agrees with the prediction of the two-component model
 - *p*+*p* reference for 62.4 and 39 GeV data from Color Evaporation Model (CEM) large theoretical uncertainties

$J/\Psi R_{AA}$ in U+U 193 GeV

Higher energy density can be reached in U+U collisions

- Similar suppression pattern in U+U and Au+Au collisions
 - *p*+*p* reference from 200 GeV

Ψ' in p+p 500 GeV

- Constrain ψ' feed-down contribution to J/ ψ
- Test of charmonium production models charmonium production mechanisms in p+p are still unclear

- / First measurement of (ψ ' / J/ ψ) ratio in p+p at 500 GeV
 - Consistent with other experiments
 - No collision energy dependence observed

Upsilon in du+Au 200 GeV, CNM effects STAR

 \sim Agreement with models except y \sim 0

- Suppression at y~0, in addition to shadowing and initial state parton energy loss $\frac{1}{2} = \frac{1}{2} + \frac{1}{$
- Similar suppression seen at E772
- Better understanding of the suppression needed

Upsilon in d+Au, Au+Au and U+U

- Suppression increases with collision centrality
- The same trend in Au+Au and U+U collisions
- Agreement with models that include presence of QGP

19

Upsilon states suppression in Au+Au

Heavy Flavor Tracker (HFT)

- Inner tracking system with 3 sub-systems
- Direct topological reconstruction of a decay vertex

Precise pointing resolution

 $B \rightarrow J/\psi + X$

<u>Prompt J/ψ</u> production measurements by subtracting the contribution from B decays

Fully installed and takes data since 2014

Muon Telescope Detector (MTD)

Precision quarkonium measurements via di-µ channel

μ advantages over e:

- No γ conversion
- Much less Dalitz decay contribution
- Less affected by radiative loses in the detector material

- Multi-gap Resistive
 Plate Chamber
 (MRPC) gas
 detector
- * Long-MRPCs

STAR

Summary

- No strong energy dependence of J/ψ suppression in Au+Au 200, 62.4, 39 GeV
- $^{\succ}$ Similar J/ ψ and Υ suppression in Au+Au and U+U
- $^{\scriptscriptstyle {\sf P}}$ High $p_{\rm T}$ J/ $\psi~$ and Υ suppressed in central Au+Au 200 GeV
- > Indication for complete $\Upsilon(2S)$ and $\Upsilon(3S)$ suppression

Signals of the QGP presence

- > First ψ ' measurement in p+p at 500 GeV
 - No collision energy dependence of (ψ ' / J/ ψ) ratio seen
- For any MTD since 2014 significant improvement of quarkonium measurements

Thank you !