

James L. Drachenberg Valparaiso University for the STAR Collaboration

INDIANA-ILLINDIS WORKSHOP ON FRAGMENTATION FUNCTIONS

> BLOOMINGTON, IN, DECEMBER 12-14, 2013

OUTLINE

- Introduction
- Inclusive hadron production
- Jet+hadron and di-hadron production
- Summary

Contributions to Proton Spin Structure

Contributions to Proton Spin Structure

Relativistic Heavy Ion Collider as a Spin Collider

Concert of Facilities

• OPPIS \rightarrow LINAC \rightarrow AGS \rightarrow RHIC

Polarized-proton Collider

- Mitigate effects of depolarization resonances with "Siberian Snakes"
- Polarization measured with CNI polarimeter
- Spin rotators provide choice of spin orientation *independent of experiment*

RHIC Beam Characteristics

- Clockwise beam: "blue"; counter-clockwise beam: "yellow"
- Spin direction varies bucket-to-bucket (9.4 MHz)
- Spin pattern varies fill-to-fill

Solenoidal Tracker at RHIC

Inclusive Hadron Production at STAR

Inclusive π^0 production at $\sqrt{s} = 200$ GeV measured over three ranges of pseudorapidity at STAR

All in agreement with NLO pQCD predictions (DSS Frag. Func.)

 \rightarrow Important benchmark for asymmetry studies

(Inclusive jet cross section at 200 GeV also found in agreement with NLO pQCD) PRL 97, 252001 (2006)

STAR Longitudinal Asymmetries from Inclusive Hadrons

 A_{LL} for Inclusive π^0 production at $\sqrt{s} = 200$ GeV measured over three ranges of pseudorapidity at STAR

- Complementary to STAR jet measurements
- Expect A_{LL} to decrease with increasing pseudorapididty
- Current statistics dominated by 2005/2006 datasets
- Higher-statistics datasets under investigation

STAR has measured sizeable transverse single-spin asymmetries for forward π^0 and η production At high- x_F , η asymmetry may be larger than that of π^0

Asymmetries at intermediate pseudorapidity consistent with zero

Above results mostly from 2006 (6.8 pb⁻¹ at 55% polarization)

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

 "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

- "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"
- "...the Sivers effect alone might in principle be able to explain...almost the full amount of STAR π^0 data on A_N "

STAR data from PRL 101, 222001 (2008)

Current models based on fits to SIDIS and e⁺e⁻:

- "The Collins effect...is not sufficient for the medium-large x_F range of STAR data, x_F ≥ 0.3"
- "...the Sivers effect alone might in principle be able to explain...almost the full amount of STAR π^0 data on A_N "

Theoretical questions remain about applicability to *p*+*p* data of Sivers extractions from SIDIS (e.g. Kang et al., PRD 83, 094001 (2011))

Despite expectation of $1/p_T$ scaling, STAR data from Run-3 to Run-8 show **no sign of** $1/p_T$ fall-off out to $p_T \sim 5 \ GeV/c$ Asymmetries at intermediate- η consistent

with zero for $5 < p_T < 12 \text{ GeV/c}$

Recent measurements at $\sqrt{s} = 500$ GeV show *no sign of 1/p_T fall-off out to p_T ~ 10 GeV/c* (consistent across multiple x_F-bins)

Recent models based on SIDIS fits suggest flat p_T -dependence for Sivers effect out to $p_T \sim 7$ GeV/c but at *lower magnitude than data*

Similar behavior for **Collins effect** in some parameterizations → possible hint of Collins+Sivers effect?

Twist-3 models also see flat p_T dependence out to $p_T \sim 15$ GeV/c [e.g. Kanazawa and Koike, PRD 83, 114024 (2011)]

Recent data from 2012 suggest that asymmetries for pions with additional near-side energy deposit have *lower asymmetries than those of more isolated pions*

Recent data from 2012 further suggest that asymmetries for pions with additional near-side pion have

lower asymmetries than those with away-side or mid-range pion \rightarrow In both $\sqrt{s} = 200$ and 500 GeV isolated pions show higher asymmetry than jet-like pions

Forward neutral-energy jet analysis of 2011 ongoing (M. Mondal, GHP2013)

Jet Reconstruction in STAR

Fragmentation in STAR Jet Reconstruction

STAR Longitudinal Asymmetries from Inclusive Jets

⊣ 0.06

날 0.05

0.04

0.03

0.02

0.01

-0.01

-0.02

-0.03

-0.04

_∃0.06 ▼

GRSV-STD

GRSV-STD GRSV-ZERO

DSSV

GRSV-ZERO

DSSV 22+2% Uncert

2009 STAR Preliminary

 \sqrt{s} =200 GeV \vec{p} + \vec{p} \rightarrow jet+X $|\eta|<0.5$

±8.8% scale uncertainty

from polarization not shown

Particle Jet p_ [GeV/c]

20

Relative Luminosity Uncert

- 2009 $A_{LL} \rightarrow$ two pseudorapidity ranges
- **Forward jets (0.5 < η < 1):**
 - Larger fraction of q-g scattering with
 - Higher x quarks that are more polarized
 - Lower x gluons that are less polarized
 - Larger $|\cos(\theta^*)| \rightarrow$ reduced \hat{a}_{IL}
- A_{LL} falls between the predictions from DSSV and GRSV-STD
- First experimental evidence of **non-zero** $\Delta g(x)$ in range $0.05 \le x \le 0.2$

STAR Spin Measurements - Drachenberg

2012 STAR data provide opportunity for *higher precision and greatly reduced systematic uncertainties at* $\sqrt{s} = 200 \text{ GeV}$ *analysis well underway*

2011 STAR data provide opportunity for first measurements of central pseudorapidity inclusive jet asymmetries at √s = 500 GeV
 → Increased sensitivity to gluonic subprocesses

Various contributions to polarized jet+ π cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0}\sin\phi_{S}$$
$$+ d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{h})$$
$$+ d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{h})$$
$$Phys. Rev. D 83, 034021 (2011)$$

Various contributions to polarized jet+ π cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0}\sin\phi_{S}$$
$$+ d\Delta\sigma_{1}^{-}\sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+}\sin(\phi_{S} + \phi_{h})$$
$$+ d\Delta\sigma_{2}^{-}\sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+}\sin(\phi_{S} + 2\phi_{h})$$

Phys. Rev. D 83, 034021 (2011)

Negligible under *maximized* scenario!

Various contributions to polarized jet+ π cross section (TMD approach) $d\sigma(\phi_s,\phi_h) - d\sigma(\phi_s + \pi,\phi_h) \sim d\Delta\sigma_0 \sin\phi_s$ $+d\Delta\sigma_1^-\sin(\phi_S-\phi_h)+d\Delta\sigma_1^+\sin(\phi_S+\phi_h)$ $+d\Delta\sigma_2 \sin(\phi_s - 2\phi_h) + d\Delta\sigma_2 \sin(\phi_s + 2\phi_h)$ 0.01 Phys. Rev. D 83, 034021 (2011) $A_N^{\sin(\phi_S - \phi_\pi^H)}$ D'Alesio et al. π^+ 0.005 Possible non-zero contributions, expected to be quite small 0 e.g. Phys. Rev. Lett 99, 142003 (2007); Phys. Rev. D 86, 032006 (2012); Phys. Lett. B 720, 161 (2013) π -0.005 projections for $\sqrt{s} = 500$ GeV SIDIS 1 $0 < \eta_i < 1$ SIDIS 2 ······ -0.01 0.2 0.4 0.8 0.6 0

Z,

Various contributions to polarized jet+ π cross section (TMD approach)

$$d\sigma(\phi_{S},\phi_{h}) - d\sigma(\phi_{S} + \pi,\phi_{h}) \sim d\Delta\sigma_{0} \sin\phi_{S}$$

$$+ d\Delta\sigma_{1}^{-} \sin(\phi_{S} - \phi_{h}) + d\Delta\sigma_{1}^{+} \sin(\phi_{S} + \phi_{h})$$

$$+ d\Delta\sigma_{2}^{-} \sin(\phi_{S} - 2\phi_{h}) + d\Delta\sigma_{2}^{+} \sin(\phi_{S} + 2\phi_{h})$$
Phys. Rev. D 83, 034021 (2011)
Phys. Rev. D 73, 014020 (2006)
Phys. Rev. D 74, 014020 (2006

STAR Spin Measurements - Drachenberg

Sivers Asymmetries at 500 GeV

Sivers Asymmetries at 500 GeV

STAR Spin Measurements - Drachenberg

Collins Asymmetries at 500 GeV

Present data do not have sufficient statistics at high-z to observe Collins asymmetry of order 1%

Collins-like Asymmetries at 500 GeV

Model predictions shown for "maximized" effect, saturated to positivity bound Until now, Collins-like asymmetries completely unconstrained → Sensitive to linearly polarized gluons

STAR Transverse Asymmetries from Di-hadrons

 $\phi_{\rm S}$: Angle between polarization vector and event plane

Another path to transversity: interference fragmentation functions via di-hadron asymmetries Advantage: applicable in collinear framework

STAR Transverse Asymmetries from Di-hadrons

Non-zero signal for di-hadron transverse singlespin asymmetries in 2006 data → Inform transversity at higher x, Q²?

STAR Transverse Asymmetries from Di-hadrons

Non-zero signal for di-hadron transverse singlespin asymmetries in 2006 data → Inform transversity at higher x, Q²?

2012+15: opportunity for much higher precision

Analysis of 2012 data underway

Summary

• STAR measurements play a vital role in understanding nucleon spin structure

Summary

- STAR measurements play a vital role in understanding nucleon spin structure
- STAR inclusive hadron production
 - Cross-sections and A_{LL} measured at three pseudorapidity ranges
 - Persistence of sizable A_N at forward pseudorapidity to $p_T \sim 10$ GeV/c
 - Measurement of $\pi^0 A_N$ for the first time at intermediate pseudorapidity (0.8 < η < 2)

ightarrow asymmetries consistent with zero

- Precise investigation of A_N dependence of on event topology

ightarrow asymmetries in jet-like π^{0} are smaller than asymmetries in isolated π^{0}

Summary

- STAR measurements play a vital role in understanding nucleon spin structure
- STAR inclusive hadron production
 - Cross-sections and A_{LL} measured at three pseudorapidity ranges
 - Persistence of sizable A_N at forward pseudorapidity to $p_T \sim 10 \text{ GeV/c}$
 - Measurement of $\pi^0 A_N$ for the first time at intermediate pseudorapidity (0.8 < η < 2)

ightarrow asymmetries consistent with zero

- Precise investigation of A_N dependence of on event topology
 - ightarrow asymmetries in jet-like π^{0} are smaller than asymmetries in isolated π^{0}
- STAR inclusive jet and di-hadron production
 - **Significant constraints** placed on gluon polarization \rightarrow between DSSV and GRSV-STD
 - First signs of transversity at RHIC through inclusive jet and di-hadron asymmetries
 - Investigation of transverse single-spin asymmetries for the first time in inclusive jets at central pseudorapidity and $\sqrt{s} = 500$ GeV
 - **First ever measurement of "Collins-like" effect from linearly polarized gluons**
 - Stage set for analysis of A_{UT} -moment evolution from 200 GeV to 500 GeV
 - Analyses underway of Collins and IFF from 2012 run → higher statistical precision and reduced systematics

Back-up Slides

Collins-like Asymmetries at 500 GeV

Collins-like Asymmetries at 500 GeV

Similarly, no large effect observed as a function of jet p_T Measured asymmetries shown for $-1 < \eta < 1$ in z-bins

Collins Asymmetries

Present model predictions expect negligible effects for A_{UT} vs. j_T integrated over z > 0.1

Measured asymmetries shown for $x_F > 0$ (i.e. $0 < \eta_{jet} < 1$) in z-bins No sign of non-zero asymmetry as a function of j_T or jet p_T Similarly, no sign of positive effect for backward region ($x_F < 0$), as expected

STAR Longitudinal Asymmetries from Inclusive Hadrons

- STAR measured A_{LL} for inclusive charged pions during 2005
- $A_{LL}(\pi^+) A_{LL}(\pi)$ is sensitive to the sign of ΔG
- Difficult to trigger on charged pions
- Used the E/M calorimeter jet patch trigger as a surrogate
 → significant trigger bias (dominates syst. error band)

STAR Longitudinal Asymmetries from Inclusive Hadrons

measure these

- Making lemons into lemonade
 → Beat the trigger bias by using it
- Trigger and reconstruct a jet, then look for a charged pion on the opposite side
- Correlation measurement significantly increases the sensitivity of $A_{LL}(\pi^+)$

STAR Transverse Asymmetries at Central Pseudorapidity

Maximized Contributions (200 GeV)

2011 provides first look at transverse-spin inclusive jets at central pseudorapidity range with $\sqrt{s} = 500$ GeV

Collins asymmetries expected to be small at $\sqrt{s} = 500 \text{ GeV}$

Higher gluon participation at $\sqrt{s} = 500 \text{ GeV}$ allows unique sensitivity to gluon Collins-like asymmetry