

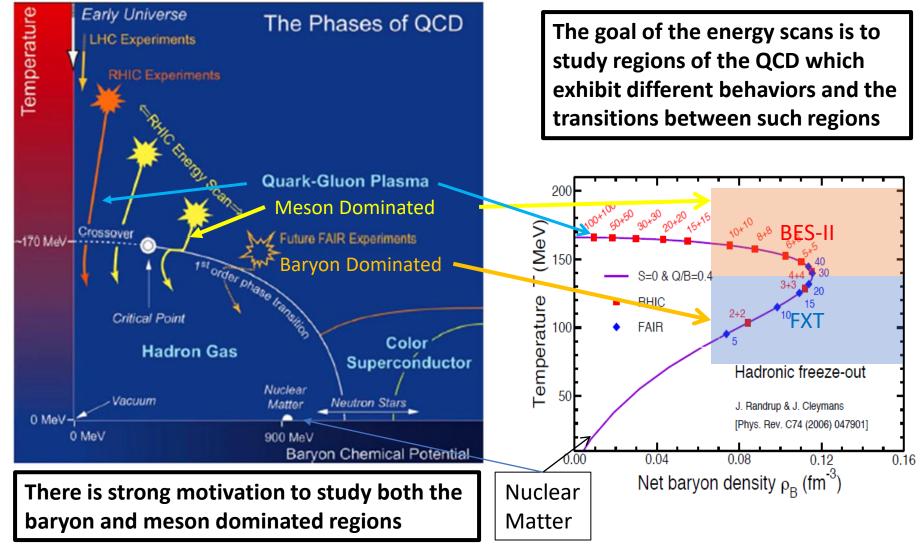
STAR BES II/FXT Results and Plans

Daniel Cebra University of California, Davis

For the STAR Collaboration

The goals of the Beam Energy Scan program:

- 1) Find the disappearance of QGP signatures
- 2) Find evidence of a first-order phase transition
- 3) Find the possible Critical Point


STAR

Motivation for Energy Scans

Onset of deconfinement; nature of the phase transition; Critical Point; Partonic Matter

BES-II Whitepaper 2014

Studying the Phase Diagram of QCD Matter at RHIC

A STAR white paper summarizing the current understanding and describing future plans

01 June 2014

Select the most important energy range → 3 to 20 GeV (Add fixed-target program)

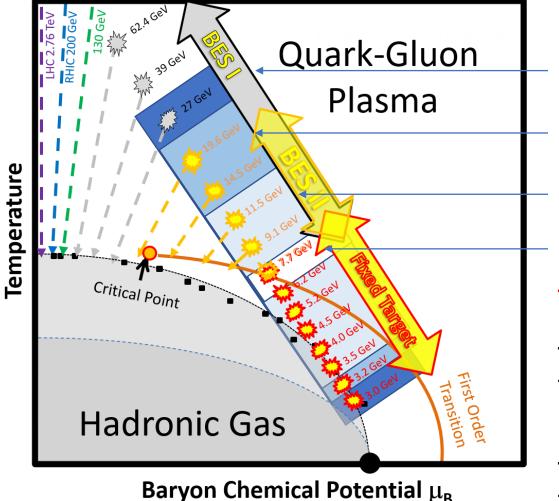
Improve significance

→Long runs, higher luminosity (electron cooling)

Beam Energy Scan II

(2018 - 2021)

Refine the signals


→ Detector improvements (iTPC, eTOF, EPD)

Daniel Cebra 3/19/2022 The $1^{\mbox{st}}$ Workshop on Physics at High Baryon Density

STAR Beam Energy Scan II – Mapping the QCD Phase Diagram The Experimental Plan

Go from easiest to hardest

Run 18 -- 27 GeV, FXT 3.0, FXT 7.2 Beams are accelerated Run 19 - 19.6, 14.6, FXT 3.2 GeV No acceleration in RHIC Run 20 - 11.5, 9.2, six FXT energies Needs cooling at 9.2 GeV Run 21 - 7.7, 17.3 GeV Collider FXT 9.2, 11.5, 13.5, hi stats at FXT 3

The plan went well, all items in red were extra

The BESII collider program maps the approach to the transition from the QGP side of the QCD phase diagram.

The FXT program maps the baryon-rich side of the phase diagram

BES-II Physics Goals and statistics

5

					0.1							
Collision Energy (GeV)				7.7	9.1	11.5	14.5		9.6	Added two energies: 17.3 and 27		
Total of 7 collider energies	$\mu_{\rm B}$ (MeV) in 0-5% central collisions		ns 4	420 370		315 260		205		Added two energies: 17.5 and 27		
	Observables											
Note, there are talks by: X.Sun – Alignments	R_{CP} up to $p_{\rm T} = 5 \ {\rm GeV}/c$			-	-	160	125	5 9	92	-		
	Elliptic Flow (ϕ mesons)			80	120	160	160) 3	20	QM poster 19.6		
	Chiral Magnetic Effect			50	50	50	50		50	QM talk – 27 GeV QM talk, 2 poster		
	Directed Flow (protons)			20	30	35	45		50			
YH Leung – Hypernuclei	Azimuthal Femtoscopy (protons)			35	40	50	65		30	QM poster		
• //	Net-Proton Kurtosis			70	85	100	170		40	Preliminary results – 27 GeV		
G.Wang Collectivity										QM talk – 27 GeV		
	Dileptons			100	160	230	300		00	QM poster		
	$>5\sigma$ Magnetic Field Significance			50	80	110	150		00			
	Required Number of Events]	100	160	230	300) 4	00			
Total of 12 FXT energies	$\sqrt{s_{NN}}$ (GeV)	3.0	3.2	3.5	3.9	4.5	5.2	6.2	7.7	Added four energies:		
	Single Beam Energy (GeV)		4.55	5.75	7.3	9.8	13.5	19.5	31.2	7.2, 9.2, 11.5, 13.5		
	$ \mu_{\rm B} ({\rm MeV}) $ Rapidity y_{CM}	721 1.06	$699 \\ 1.13$	$\frac{666}{1.25}$	$633 \\ 1.37$	$\frac{589}{1.52}$	$541 \\ 1.68$	$487 \\ 1.87$	$420 \\ 2.10$	Added high statistics at 3 GeV		
	Observables	1.00	1.15	1.20	1.07	1.04	1.00	1.07	2.10	Audeu night statistics at 5 Ge		
	Elliptic Flow (kaons)	300	150	80	40	20	40	60	80	QM 2 posters 3		
	Chiral Magnetic Effect	70	60	50	50	50	70	80	100	-		
	Directed Flow (protons)	20	30	35	45	50	60	70	90	QM poster		
	Femtoscopy (tilt angle)	60	50	40	50	65	70	80	100	QM talk		
	Net-Proton Kurtosis	36	50	75	125	200	400	950	NA	QM talk		
	Multi-strange baryons	300	100	60	40	25	30	50	100			
	Hypertritons	200	100	80	50	50	60	70	100	QM talk (3,19.6, 27), 3 posters		
	Requested Number of Events	300	100	100	100	100	100	100	100			
Danial Cobra	The 1 st Workshop on Physics at High Baryon Density QM talk – Light nuclei 3, 19.6								QM talk – Light nuclei 3, 19.6, 27, poste			

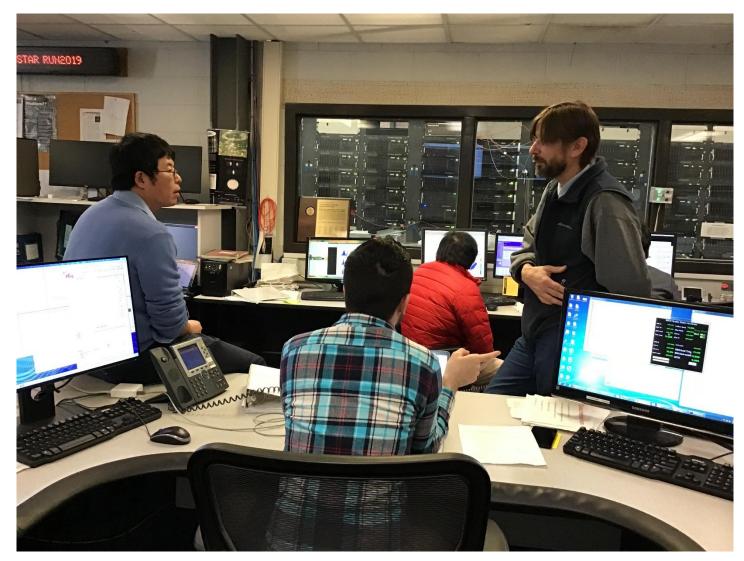
Daniel Cebra 3/19/2022

~ workshop on Physics at πigh baryon Density THE T.

QM talk – pi,K,p 3 GeV QM talk – strange hdrons, poster 3

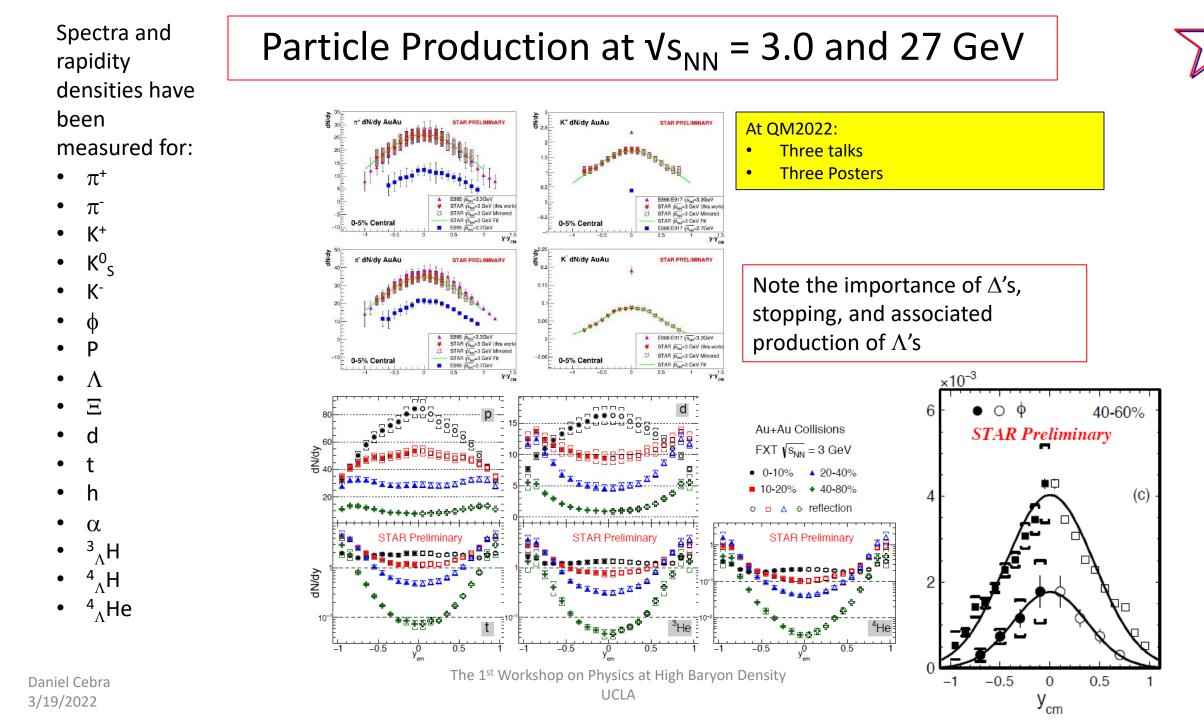
How are we doing so far?

The 27 GeV, 3.0 FXT, and 7.2 FXT have been available for over a year. Many results are final


New preliminary results from 19.6 GeV will be shown at QM2022

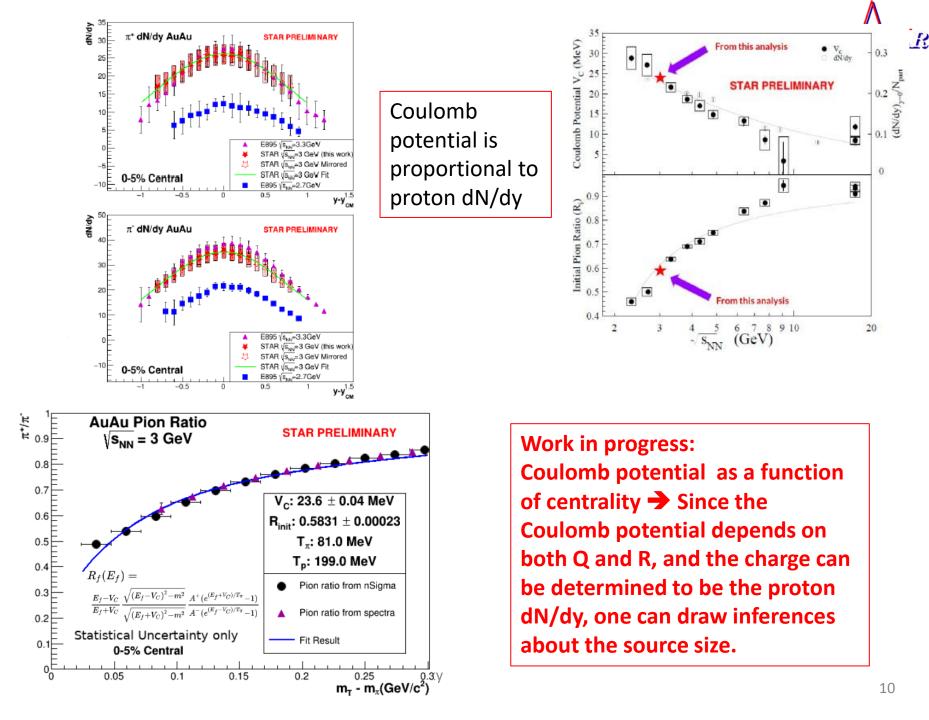
2018	Start	Stop	Good	Target	Status
27 GeV	May 10 th	June 17 th	555 M	700 M	Final
3.0 FXT	May 30 th	June 4 th	258 M	100 M	Final
7.2 FXT	June 11 th	June 12 th	155 M	none	Final
2019	Start	Stop	Good	Target	
19.6 GeV	Feb 25 th	April 3 rd	582 M	400 M	Preliminary
14.6 GeV	April 4 th	June 3 rd	324 M	310 M	Post-prod QA
3.9 FXT	June 18 th	June 18 th	52.7 M	50 M	Produced
3.2 FXT	June 28 th	July 2 nd	200.6 M	200 M	Post-prod QA
7.7 FXT	July 8 th	July 9 th	50.6 M	50 M	Produced
200 GeV	July 11 th	July 12 th	138 M	140 M	March ?

Things to lo	ok forward to	2020	Start	Stop	Good	Target	Status
		11.5 GeV	Dec 10 th	Feb 24 th	235 M	230 M	Summer?
С	ompleted	7.7 FXT	Jan 28 th	Jan 29 th	112.5 M	100 M	Produced
	the bulk of	4.5 FXT	Jan29 th	Feb 1 st	108 M	100 M	Produced
the physics program. Roughly one	6.2 FXT	Feb 1 st	Feb 2 nd	118 M	100 M	Produced	
	5.2 FXT	Feb 2 nd	Feb 3 rd	103 M	100 M	Produced	
day for each energy		3.9 FXT	Feb 4 th	Feb 5 th	117 M	100 M	Produced
		3.5 FXT	Feb 13 th	Feb 14 th	115.6 M	100 M	Produced
	-	9.2 GeV	Feb 24 th	Sep 1 st	161.8 M	160 M	Summer?
Long run for hypernuclei and higher momements		7.2 FXT	Sep 12 th	Sep 14 th	317 M	None	
		2021	Start	Stop	Good	Target	Status
	nts	7.7 GeV	Jan 31 st	May 1 st	100.9 M	100 M	May?
	Added more	3.0 FXT	May 1 st	June 28 th	2103 M	2.0 B	
	overlap	9.2 FXT	May 6 th	May 6 th	53.9 M	50 M	
	energies to	11.5 FXT	May 7 th	May 7 th	51.7 M	50 M	
	study stopping	13.7 FXT	May 8 th	May 8 th	50.7 M	50 M	
iel Cebra	300000118	17.3 GeV	May 25 th	June 7 th	256.1 M	250 M	
9/2022		17.2 FXT	June 3 rd	July 3 rd	88.6 M	None	



Daniel Cebra 3/19/2022 The 1st Workshop on Physics at High Baryon Density UCLA

8

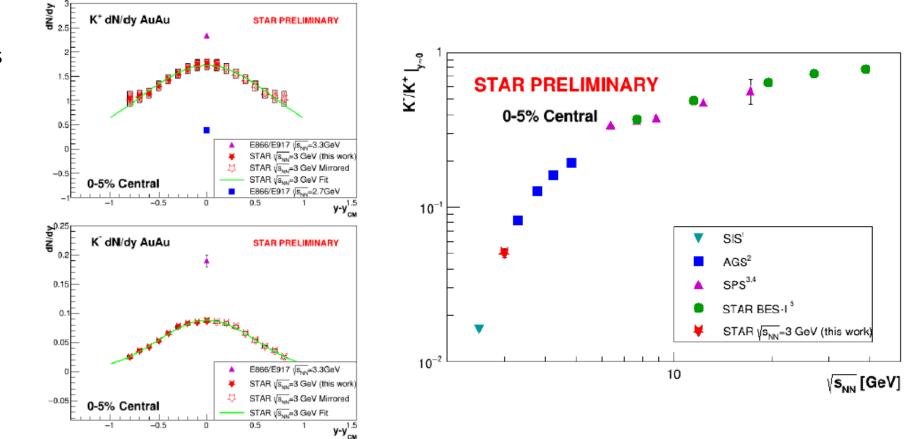

9

STAR

Pion Spectra at 3 GeV

Pions measured at similar energies during the AGS heavy-ion program. What is new? And what do we learn?

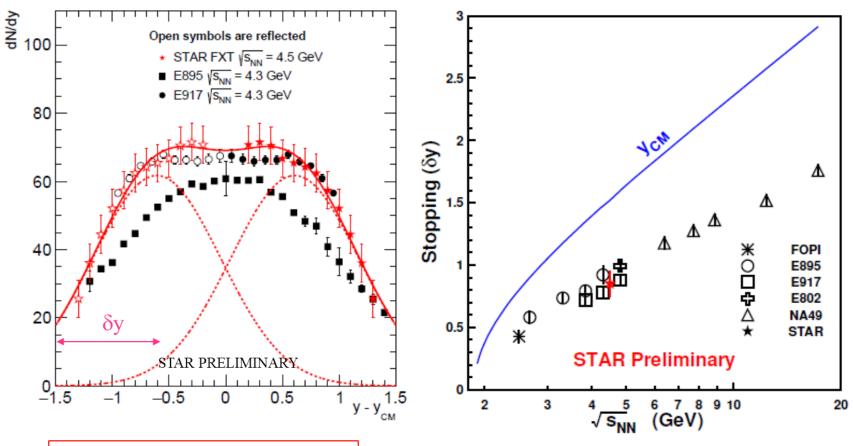
- Measurements at full rapidity
- Measurements at all centralities → Can study the Coulomb potential as the source gets smaller
- The goal is to infer about the size of the system at freeze-out



Kaon Spectra at 3 GeV

Kaons measured at similar energies during the AGS and SIS heavy-ion program. What is new? And what do we learn?

- Measurements at all rapidities
- Measurements at all centralities
- These results can help us understand the role of stopping and associated production

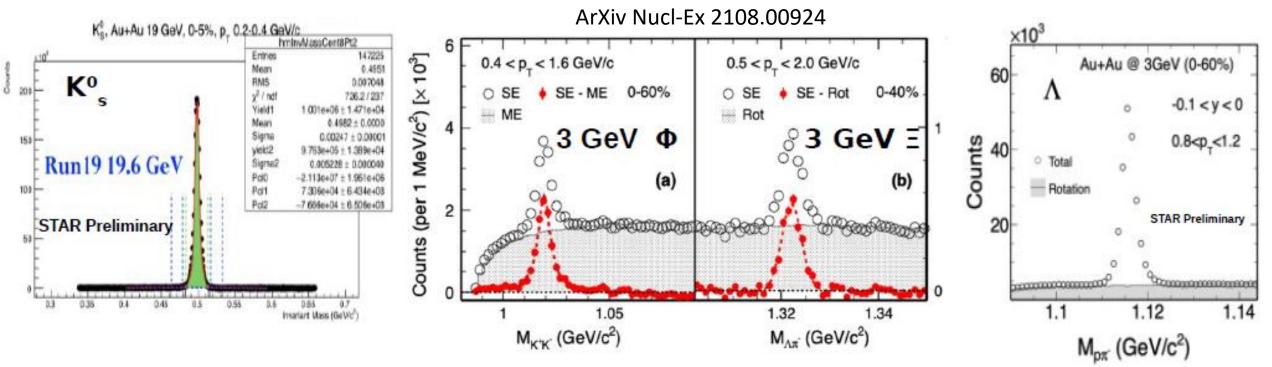


Proton Spectra at 3 GeV

protons measured at similar energies during the AGS heavy-ion program. What is new? And what do we learn?

- Measurements at all rapidities → Stopping
- Measurements at all centralities
 Stopping as a function of centrality
 Can probe how stopping changes as the number of collisions per nucleon changes
- Can better understand the mechanisms of stopping

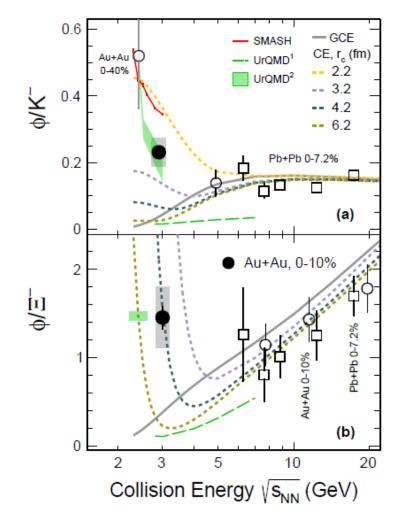
Daniel Cebra 3/19/2022 OK, I am fibbing here, these are really results from our 4.5 GeV test run, the 3 GeV results will be shown at QM2022.



Consistent with AGS results (*)

STAR

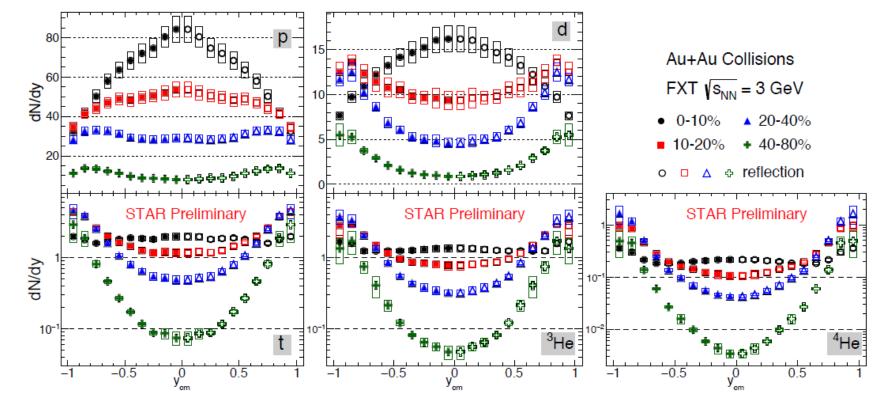
Strange Hadron Production at 3 GeV



 ϕ and Ξ spectra have been published

 ${\rm K^0}_{\rm S}$ and $\Lambda {\rm ambda}$ spectra will be shown at QM2022

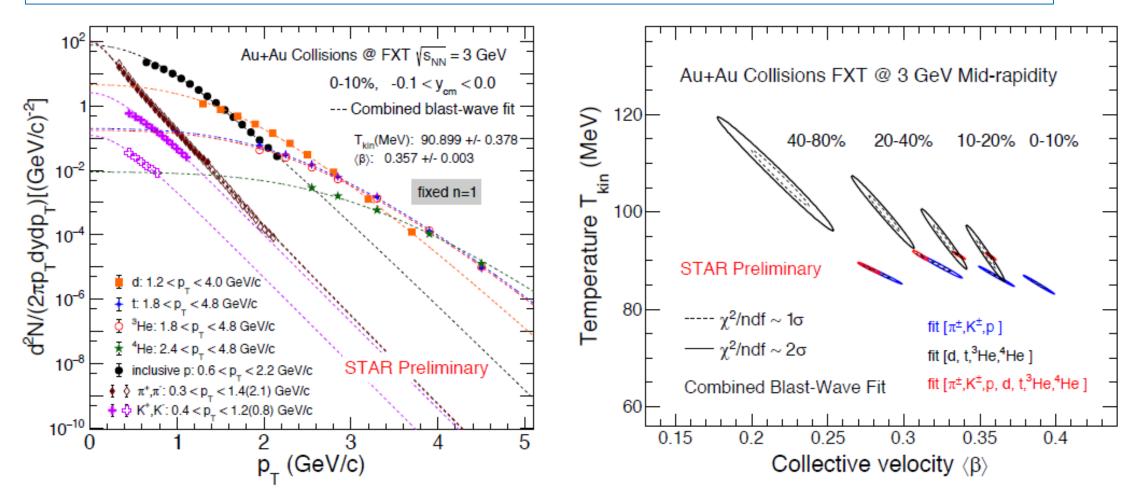
The ϕ meson is very near to threshold for the 3 GeV collisions. Ratios of the ϕ to other strange hadrons is very sensitive to the interaction radius in the Canonical Ensemble



ArXiv Nucl-Ex 2108.00924

The 1st Workshop on Physics at High Baryon Density

Production of Light Nuclei in Au+Au Collisions at Vs_{NN} = 3 GeV

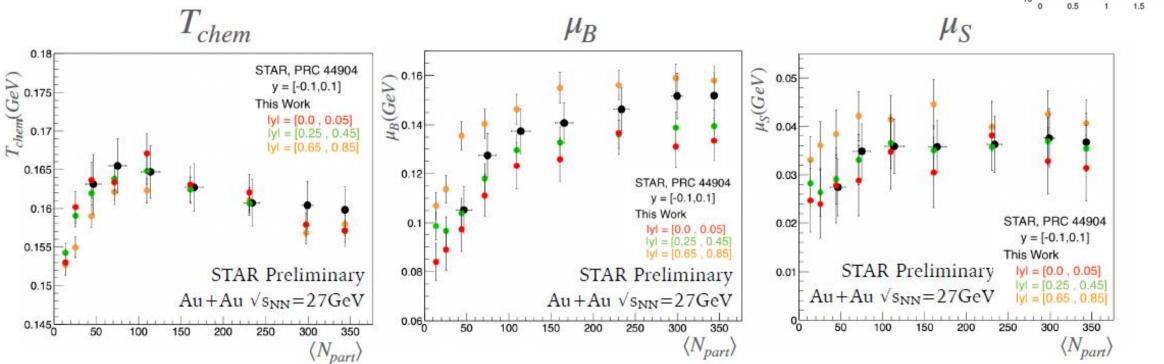

Light nuclei have been measured at many energies \rightarrow generally consistent with trends

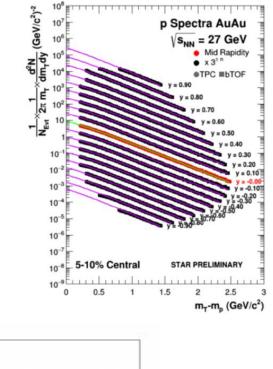
The Key physics topics are the formation of light nuclei

→ Is the coalescence model correct? We can study this as a function of centrality and rapidity

Studies of the radial flow of light nuclei compared to light hadrons → What is the effect of coalescence

The 1st Workshop on Physics at High Baryon Density


Particle production at 3 GeV: Status and plans


- The spectra and yields will all be preliminary by the QM2022 meeting
- Currently checking for consistency in terms of conservation of Baryon number, Charge, and Strangeness
- Performing global blast wave fits as a function of rapidity and centrality → Need a model the properly describes this energy regime
- Performing thermal model fits as a function of rapidity and centrality
- Performing coalescence model fits to understand the production mechanism for the light nuclei
- → Will carry out similar systematic studies at all energies as the data are available

Study of identified hadrons in Au+Au collisions at √s_{NN} = 27 GeV

27 GeV Spectra were measured in BES-I, what is new, what do we learn?

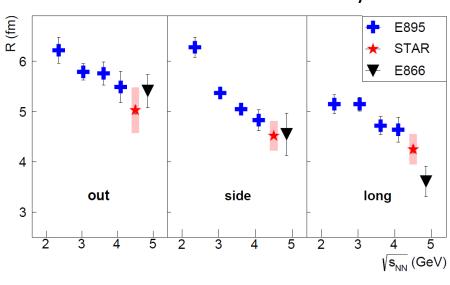
 \rightarrow Extend the rapidity coverage \rightarrow Both μ_{B} and μ_{S} are seen to change with rapidity

Daniel Cebra 3/19/2022 The 1st Workshop on Physics at High Baryon Density UCLA

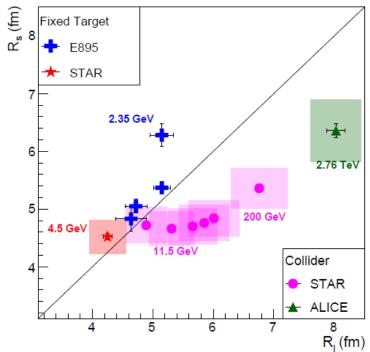
18

Femtoscopy at $Vs_{NN} = 3.0 \text{ GeV}$

The first STAR HBT results from BES-II/FXT will be shown at QM2022

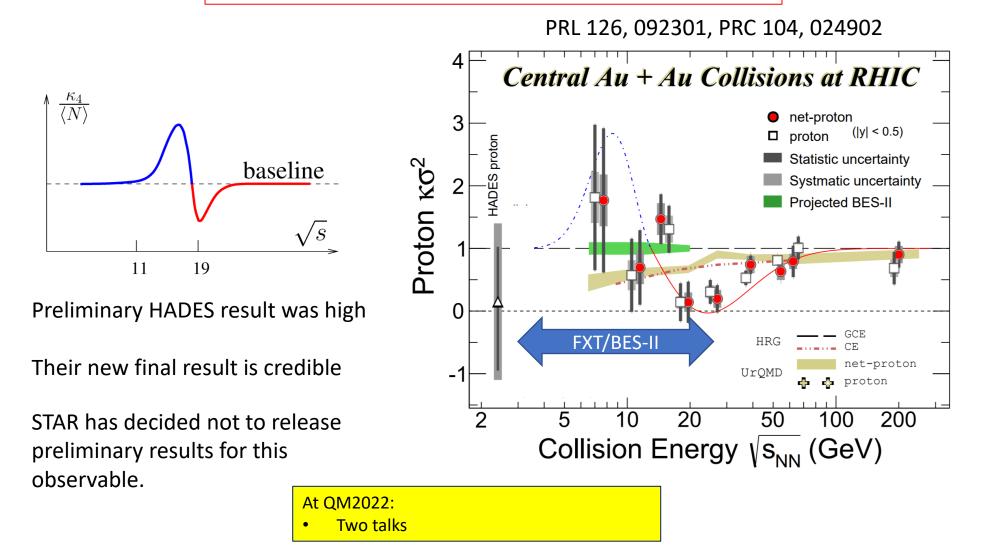

These first results will show correlation functions of light nuclei

Plans are to study azimuthal HBT and the source tilt angle as a function of energy when the data are available


Again, here we show the results from the 4.5 GeV test run

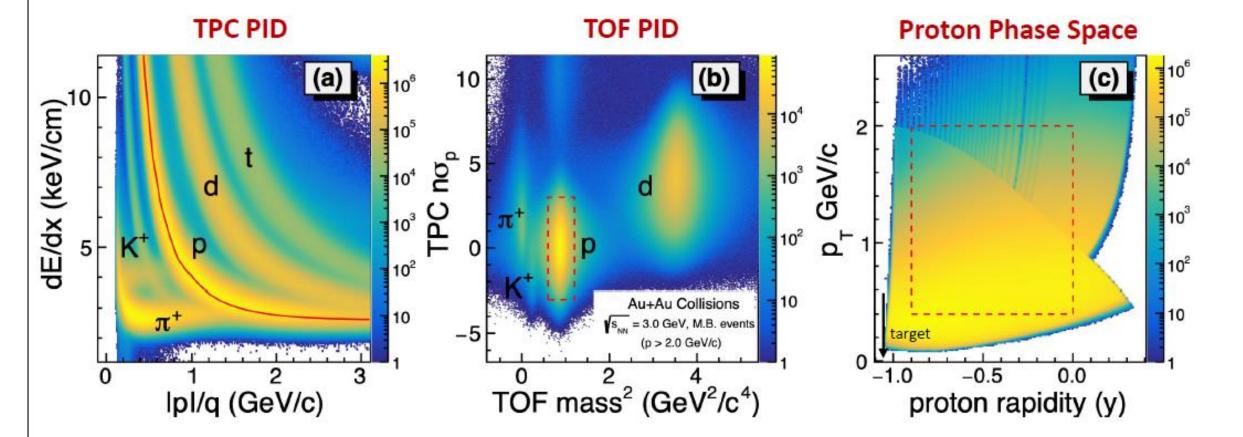
This illustrates the asHBT

With the higher statistics in the BES-II/FXT data sets, we can also resolve the tilt angle



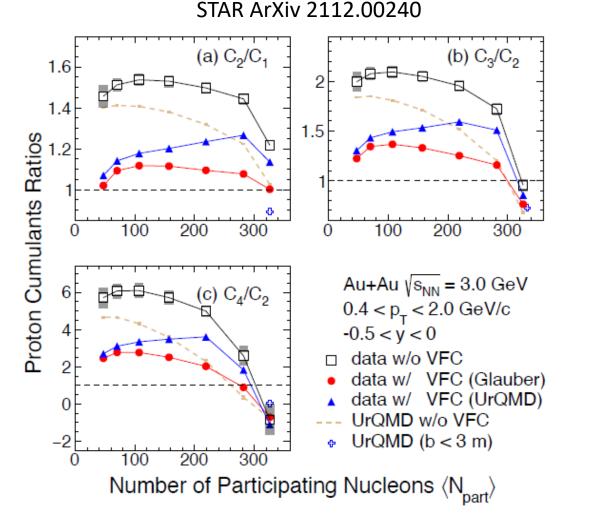
Daniel Cebra 3/19/2022

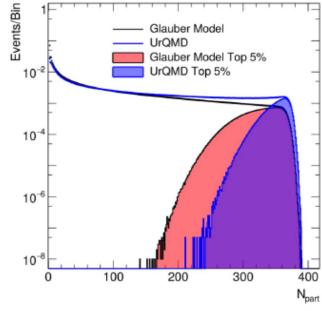
Proton Fluctuations – $\kappa\sigma^2$



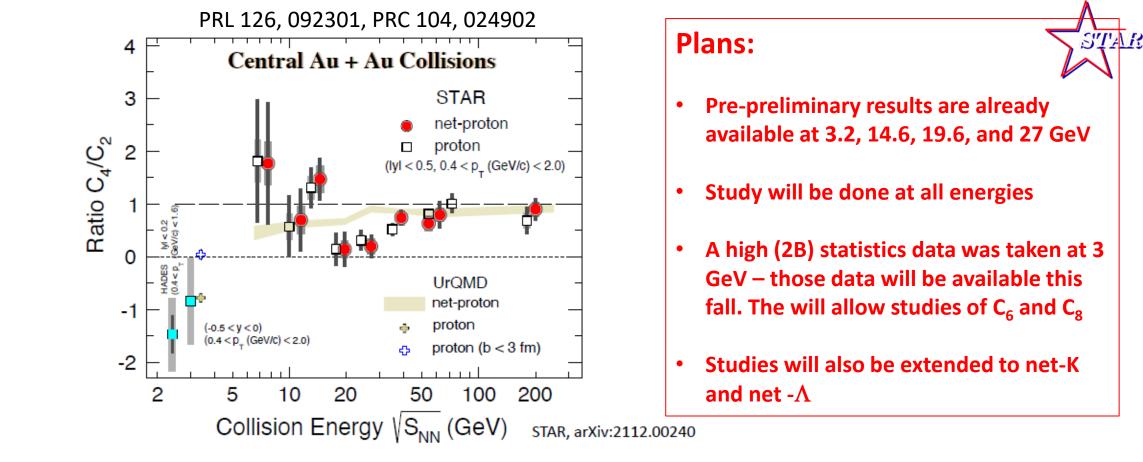
STAR

Our ability to study net-proton fluctuations is critically dependent on the particle identification and the acceptance


STAR


The analysis will get significantly more challenging for high energy FXT data sets.

The 1st Workshop on Physics at High Baryon Density



- A volume fluctuation correction method is tested on data
- Most central centrality are least affected by volume fluctuation correction

Braun-Munzinger, P. et al Nuclear Physics A 960, 114 (2017)

- The suppression of C₄/C₂ is consistent with fluctuation driven by baryon number conservation which indicates a hadronic dominant region in the top 5% central Au+Au collisions at 3 GeV
- The QCD critical point, if discovered in heavy ion collisions, could only exist at energy higher than 3 GeV

< 2.0)

Results

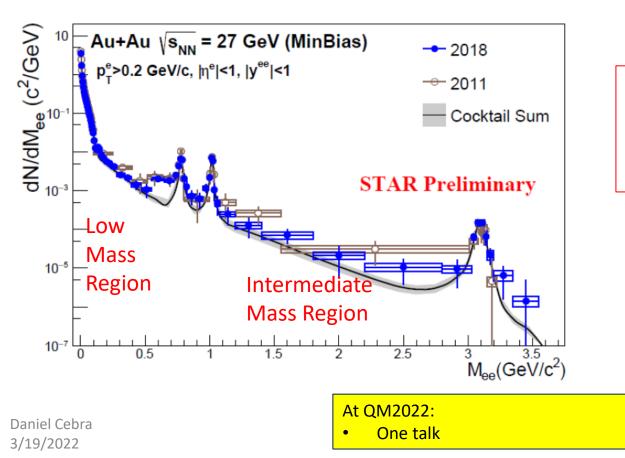
PRL 126,092301; PRC 104, 024902

	•					
u Collisions in BES	4 Central Au + Au Collisions					
BES-II / BES-I (million)	3 STAR					
400 / 36	e net-proton					
250	Q 2 (IyI < 0.5, 0.4 < p_ (GeV/c) < 2.0)					
300 / 20						
230 / 12	O O O O O O O O O O O O O O O O O O O					
160						
100/4						
200	- (-0.5 < y < 0) (0.4 < p ₇ (GeV/c) < 2.0) ↔ proton ⊕ proton (b < 3 fm)					
2000						
FXT data at $\sqrt{s_{NN}}$ = 2, and 7.7 GeV.	2 5 10 20 50 100 200 Collision Energy $\sqrt{S_{NN}}$ (GeV) STAR, arXiv:2112.00240					
	BES-II / BES-I (million) 400 / 36 250 300 / 20 230 / 12 160 100 / 4 200 2000 FXT data at √ <i>S</i> _{NN} =					

BES-II collected 10 times larger statistics than BES-I in $\sqrt{S_{NN}}$ = 3 - 19.6 GeV \geq Au+Au collisions

Measurements on those datasets will be crucial to search for the QCD \geq critical point at high baryon density region

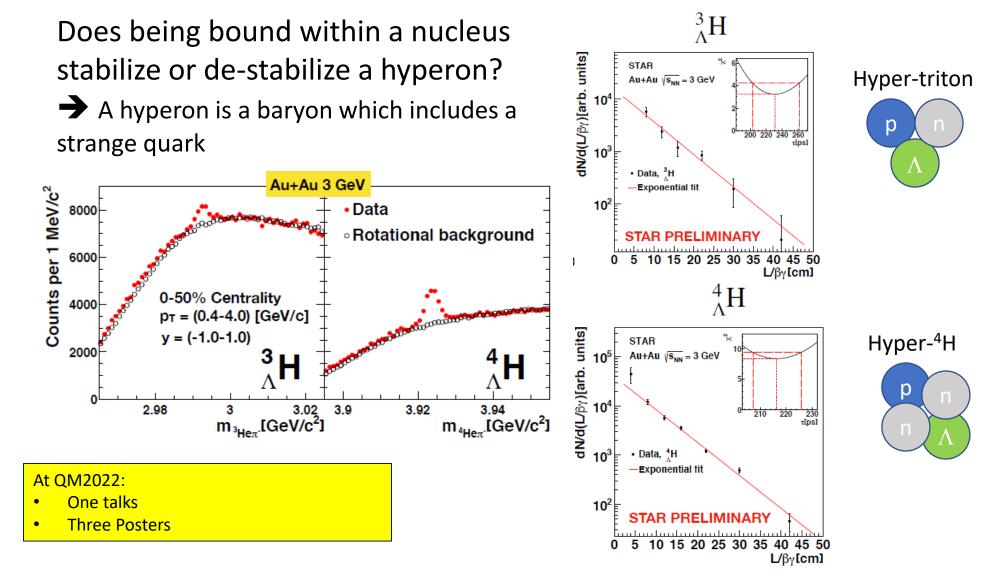
Will Remove Before Presentation


Slide left so as not to create an offset

Dileptons at $Vs_{NN} = 27 \text{ GeV}$

Recent progress has comparing the yields above cocktail to models to extract properties of the collisions

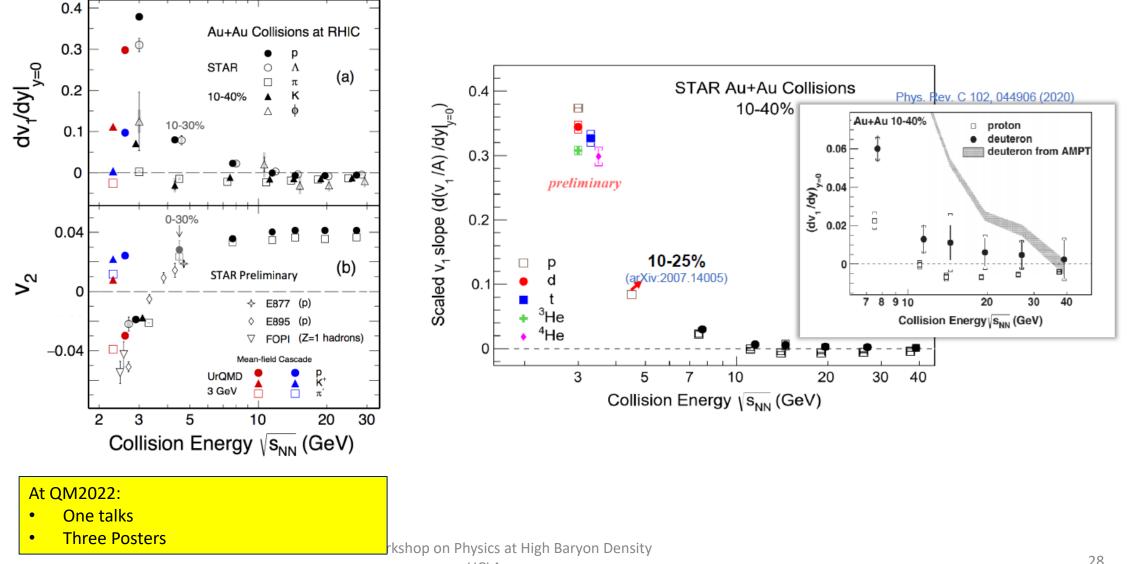
Temperature in the LMR is representative of late stage of the collision
 Temperature in the IMR is representative of an early phase of the collision


Dilepton results will be studied at all collider energies

Dilepton results from the FXT energies will be more challenging, however there analyses being pursued

bn Density

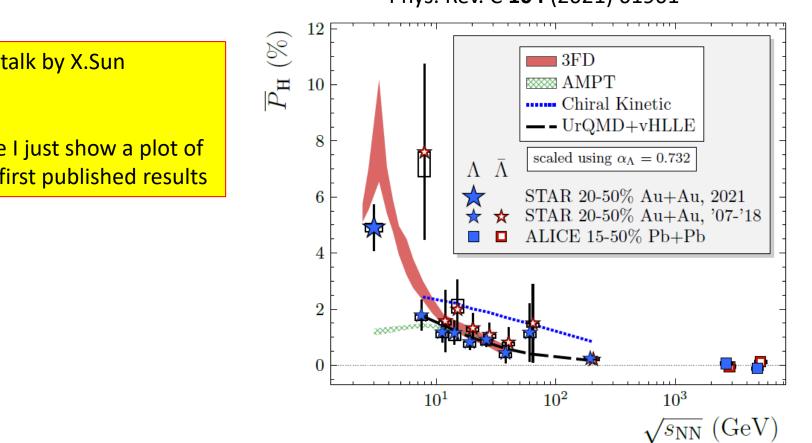
See talk by YH Leung



Daniel Cebra 3/19/2022 The 1st Workshop on Physics at High Baryon Density

See talk by G. Wang

Flow results at $Vs_{NN} = 3.0 \text{ GeV}$



Daniel Cebra 3/19/2022

UCLA

Global Polarization at $Vs_{NN} = 3$ and 27 GeV

Phys. Rev. C 104 (2021) 61901

See talk by X.Sun

Here I just show a plot of the first published results

BES-II/FXT Physics Program 2018-2021

Physics Goals

The Onset of Deconfinement:

- High p_{T} suppression (R_{CP})
- NCQ scaling of elliptic flow (ϕ and K mesons)
- LPV through three particle correlators (CME)
- Strangeness enhancement
- Polarizations and alignments

Compressibility -> First Order Phase Transition

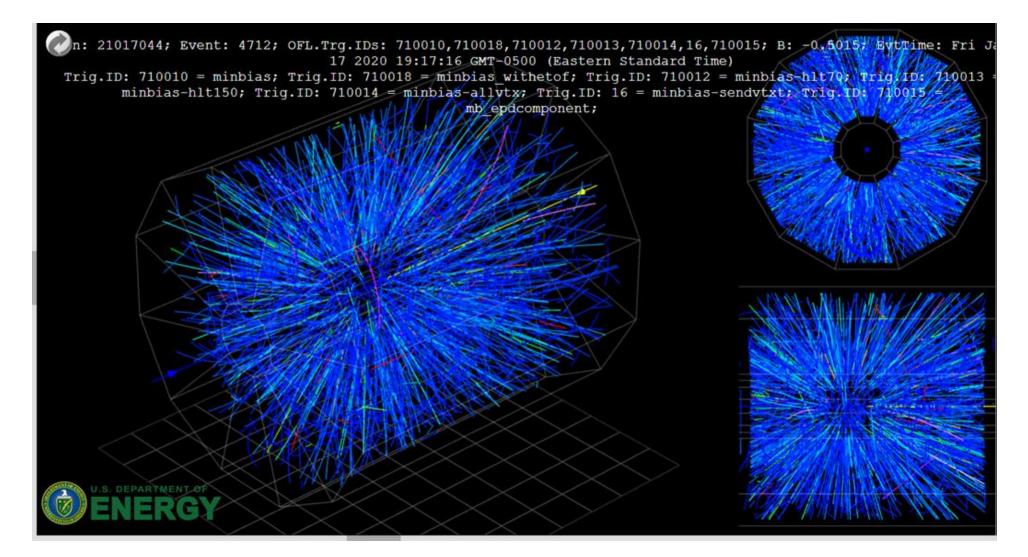
- Directed flow
- Tilt angle of the HBT source (asHBT)
- The volume of the HBT source
- The zero crossing of the elliptic flow (~6 AGeV) In Progress
- Volume measures from Coulomb potential

- Higher moments
- Particle ratio fluctuations

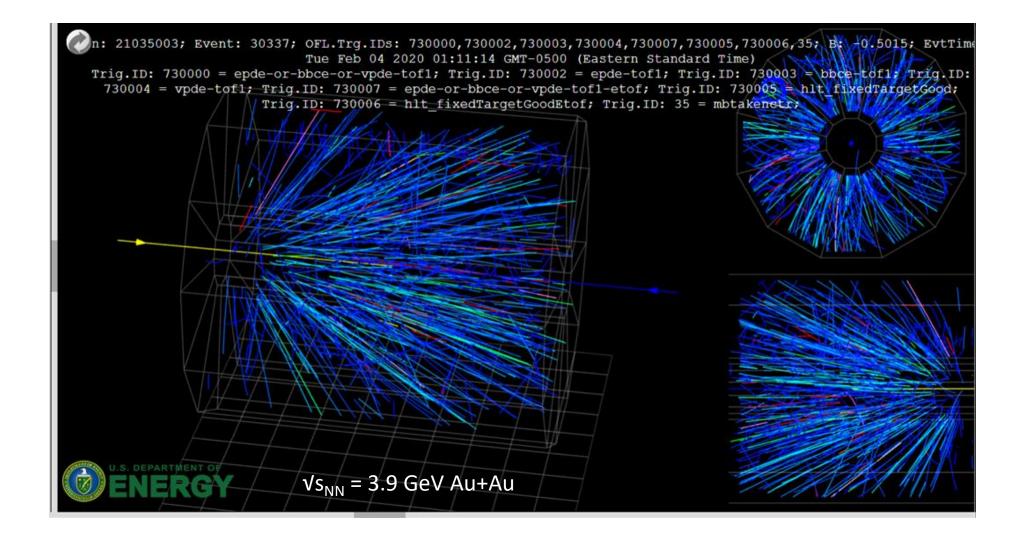
In Progress

Chirality:

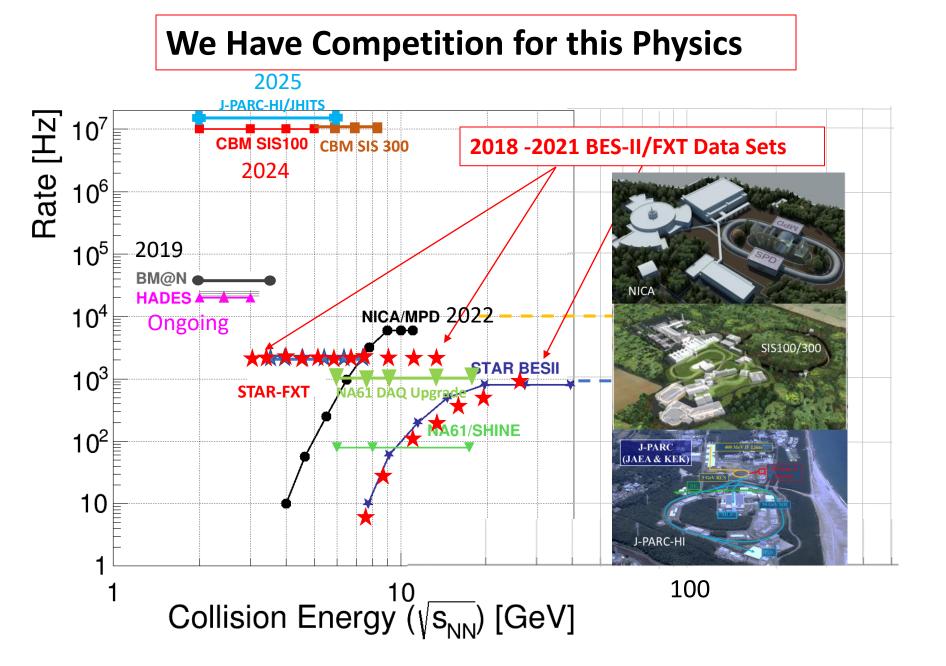
• Dilepton studies


Hypernuclei:

Lifetime of the hypertriton

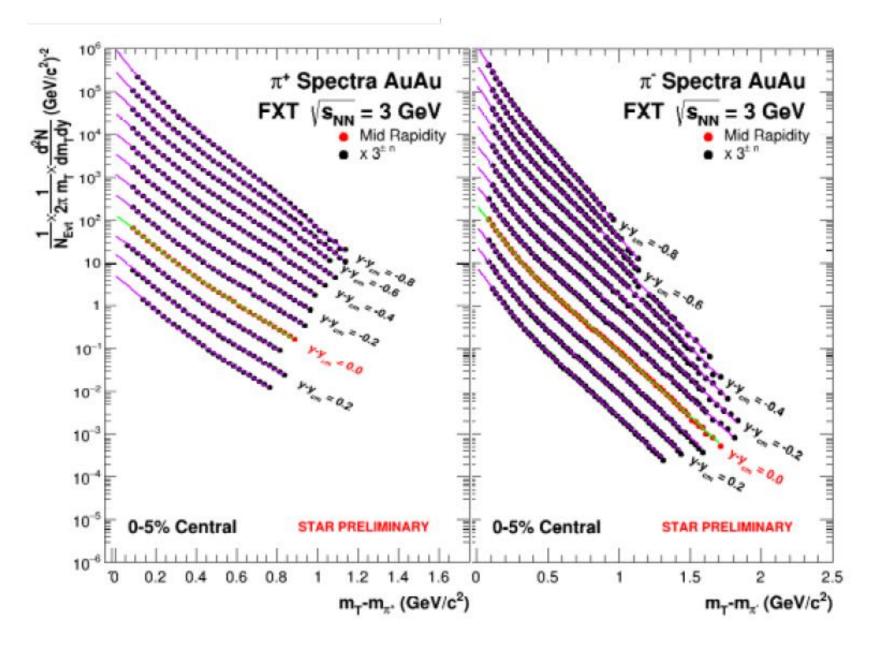

Online Event Display – Collider Event

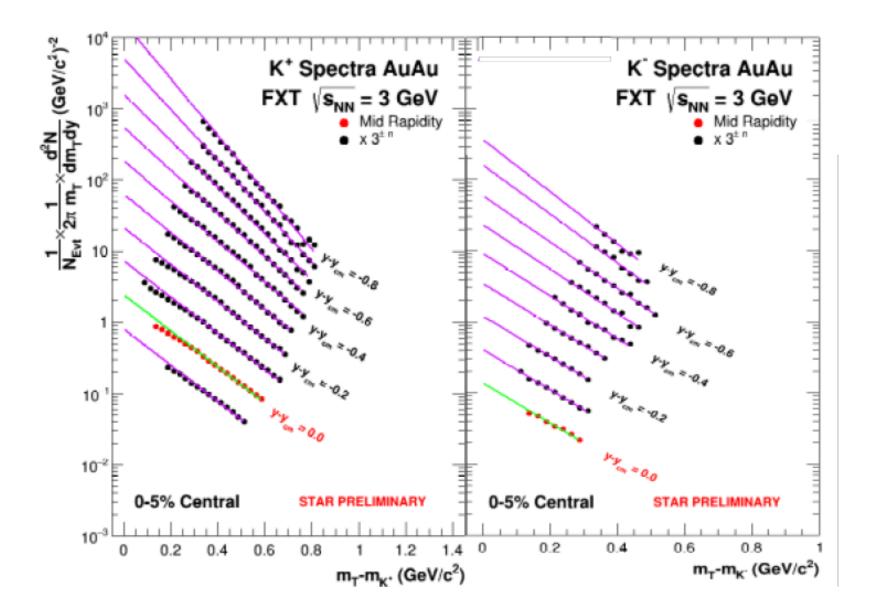
Online Event Display – FXT Event



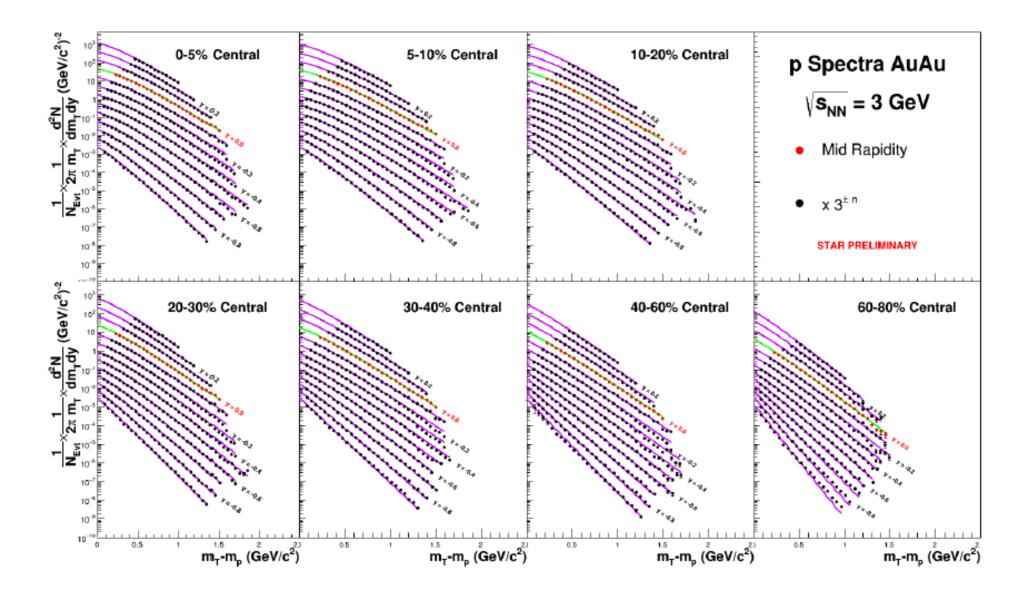
Summary

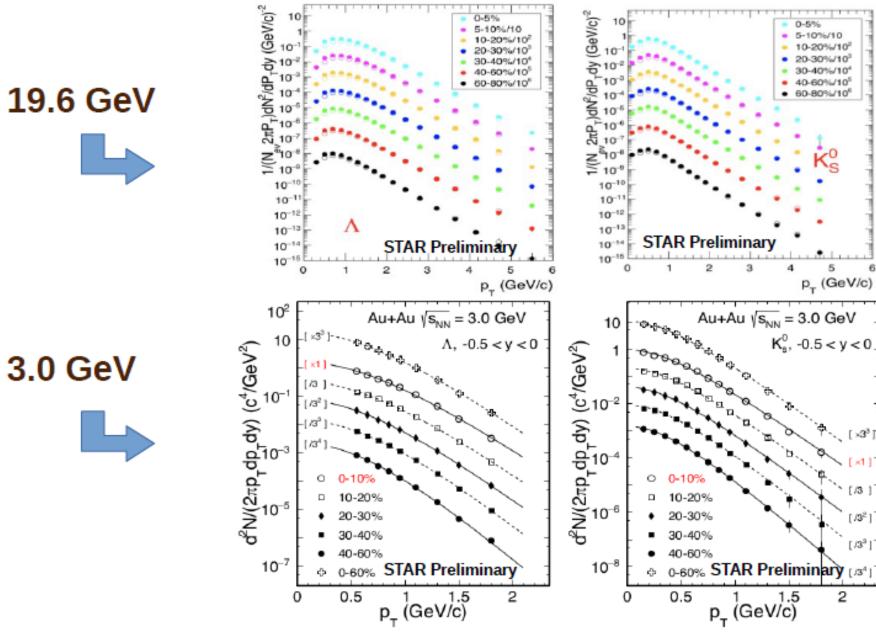
- Data taking for the STAR BES-II/FXT program was completed 2018 to 2021
- Au+Au collisions at seven collider and twelve FXT energies (with four FXT energies overlapping with the four lowest collider energies)
- Calibrations, data production and QA take time to get right and to date, only results from 3.0 and 27 GeV have been presented. New results from 19.6 will be first shown at QM2022
- All data sets should be available by the end of the year
- Most analyses identified in the proposal are underway and teams are in place to complete the analysis of the additional energies when they become available

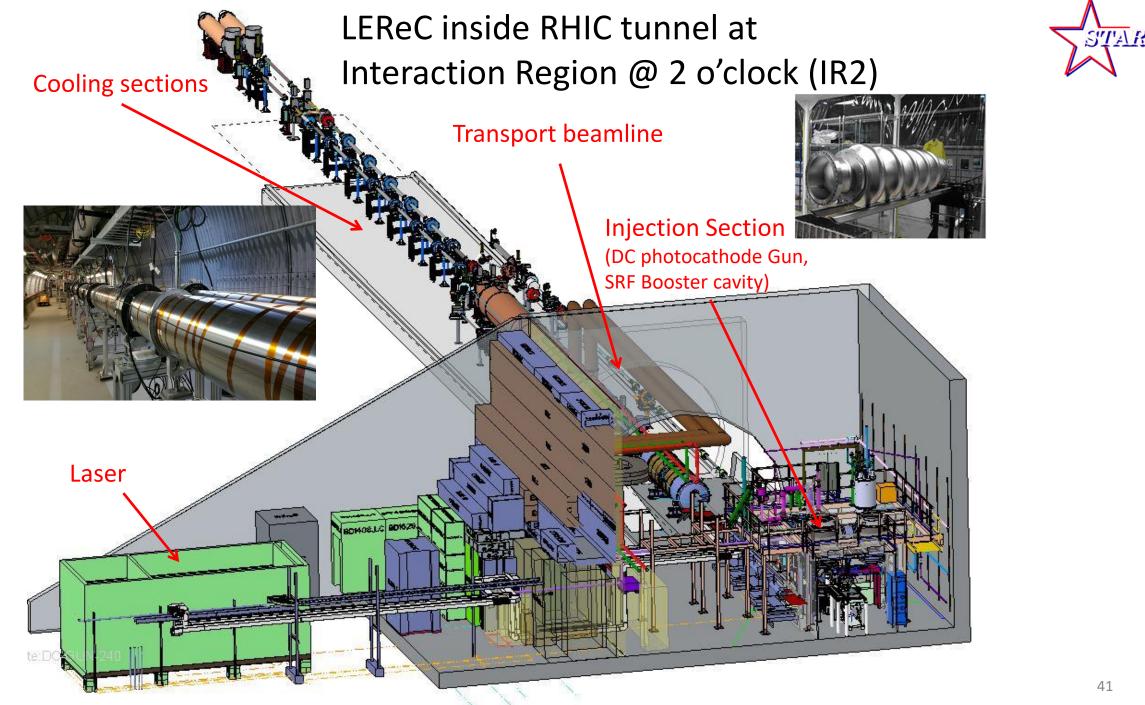



BACKUPS

The 1st Workshop on Physics at High Baryon Density


S<u>TAR</u>

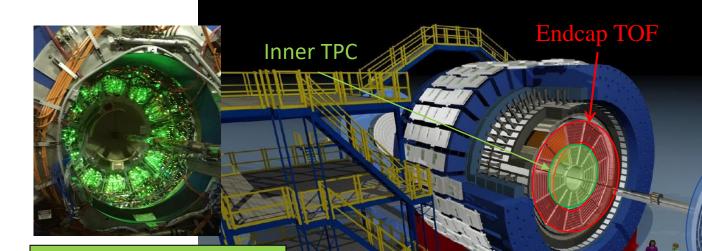




Daniel Cebra 3/19/2022

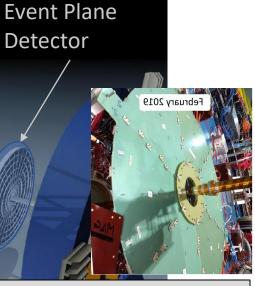
The 1st Workshop on Physics at High Baryon Density

$\sum S''' AR$


Beam E _T (GeV)	Beam E _k (AGeV)	Beam p _z (GeV/c)	Rapidity Y _{Beam}	√s _{NN} (GeV)	Rapidity У _{см}	Ch. Pot. μ _B (GeV)
3.85	2.92	3.73	2.10	3.0	1.05	721
4.59	3.66	4.50	2.28	3.2	1.13	699
5.75	4.82	5.67	2.51	3.5	1.25	666
7.3	6.4	7.25	2.75	3.9	1.37	633
9.8	8.9	9.44	3.04	4.5	1.52	589
13.5	12.6	13.5	3.37	5.2	1.68	541
19.5	18.6	19.5	3.73	6.2	1.87	487
26.5	25.6	26.5	4.04	7.2	2.02	443
31.2	30.3	31.2	4.20	7.7	2.10	420
44.5	43.6	44.5	4.56	9.2	2.28	372
70	69.1	70	5.01	11.5	2.51	316
100	99.1	100	5.37	13.7	2.69	276

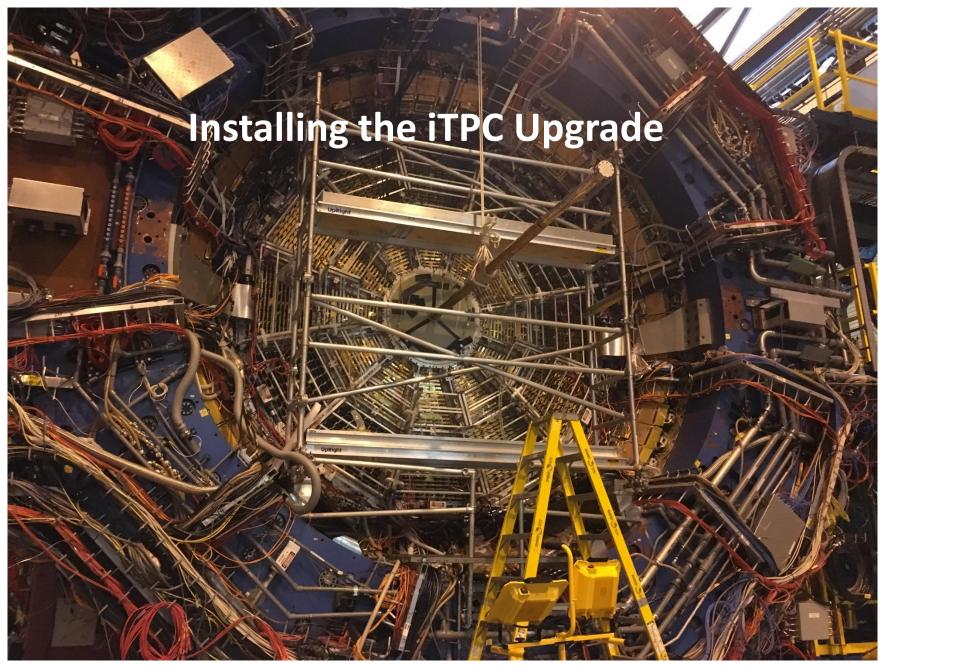
Daniel Cebra 3/19/2022

The STAR Detector Upgrades → BES-II



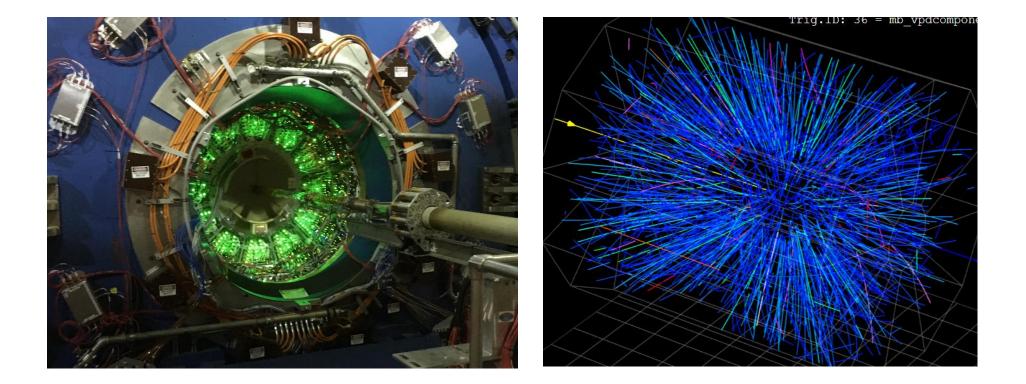
iTPC Upgrade:

- Rebuilds the inner sectors of the TPC
- Continuous Coverage
- Improves dE/dx
- Extends η coverage to 1.5 (2.2 for FXT)
- Lowers p_T cut-in from 125 MeV/c to 60 MeV/c
- Ready in 2019

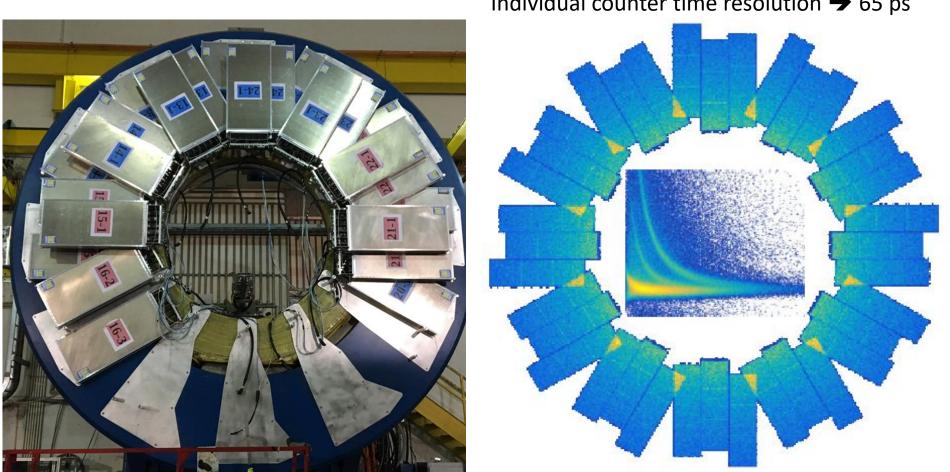

EndCap TOF Upgrade:
Rapidity coverage is critical
PID at forward rapidity
Allows higher energy range of FXT program
CBM/FAIR
Ready 2019

EPD Upgrade:

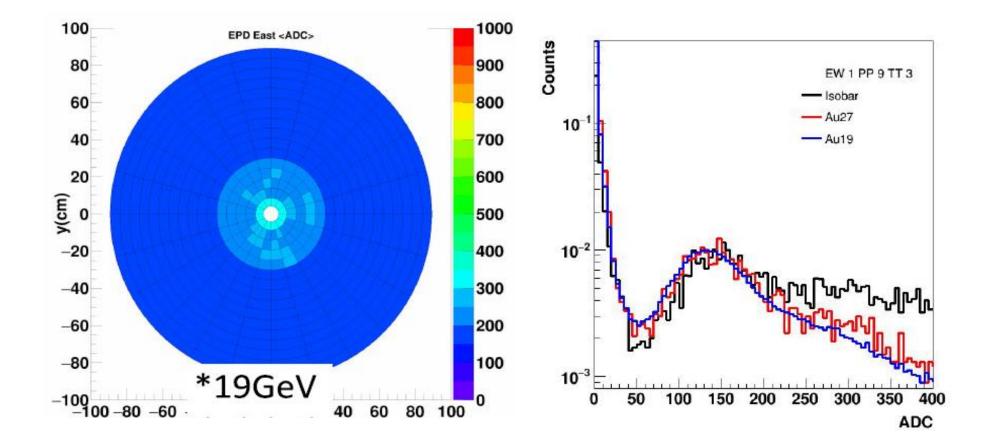
- Improves trigger
 Reduces background
 Allows a better and independent reaction plane measurement critical to BES and FXT
- Ready 2018


The 1st Workshop on Physics de Figh Bary

S<u>TAR</u>

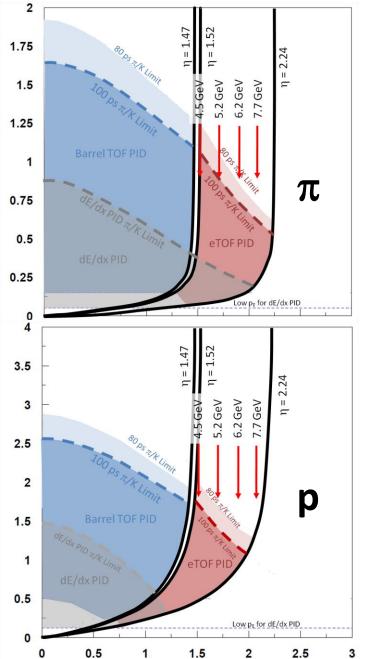

iTPC Upgrade – Current Performance

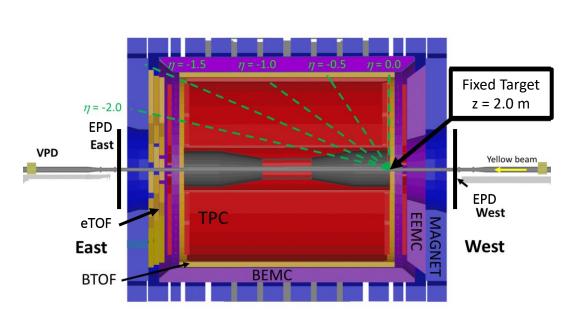
eTOF Upgrade – Current Performance



System time resolution \rightarrow 85 ps Individual counter time resolution \rightarrow 65 ps

EPD Upgrade – Current Performance

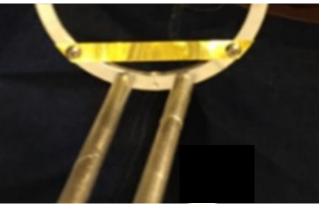


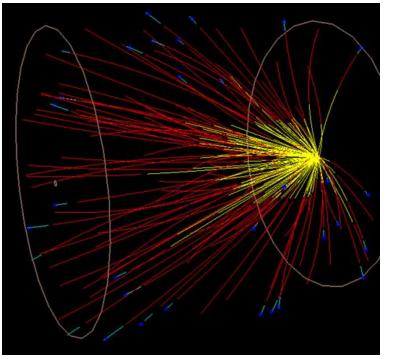

FXT Program

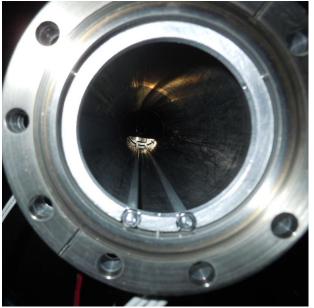
Collider Energy	Fixed- Target Energy	Single beam AGeV	Center- of-mass Rapidity	μ _в (MeV)
62.4	7.7	30.3	2.10	420
39	6.2	18.6	1.87	487
27	5.2	12.6	1.68	541
19.6	4.5	8.9	1.52	589
14.5	3.9	6.3	1.37	633
11.5	3.5	4.8	1.25	666
9.1	3.2	3.6	1.13	699
7.7	3.0	2.9	1.05	721

Data rate is DAQ limited
Would need 100 Million Events at each energy to make the sensitivity of BES-II

• Two days per energy

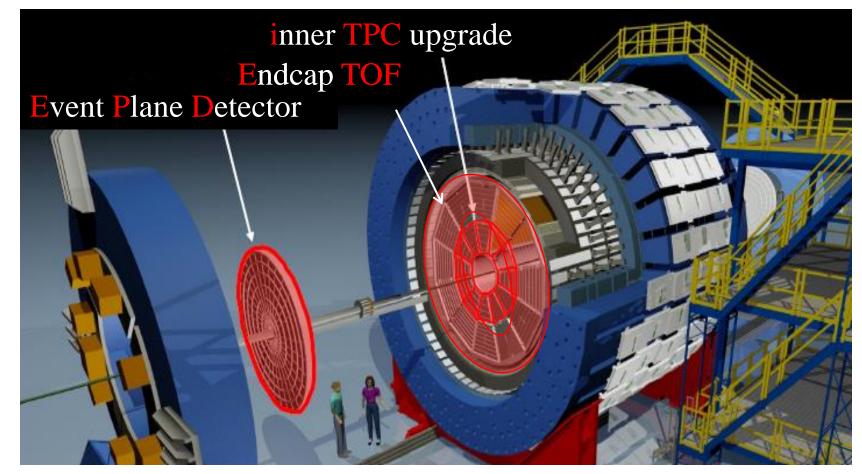




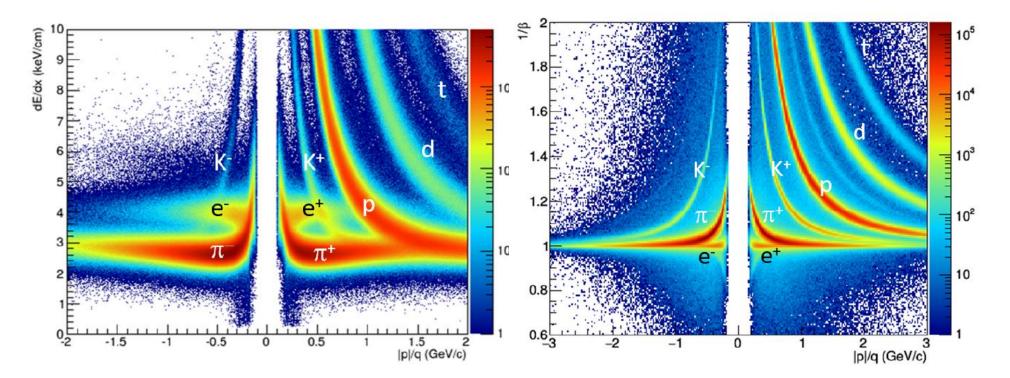

Fixed-Target Program Exp. Setup

Gold Target:

- 250 µm foil
- 2 cm below the nominal beam axis
- 2 m from the center of STAR

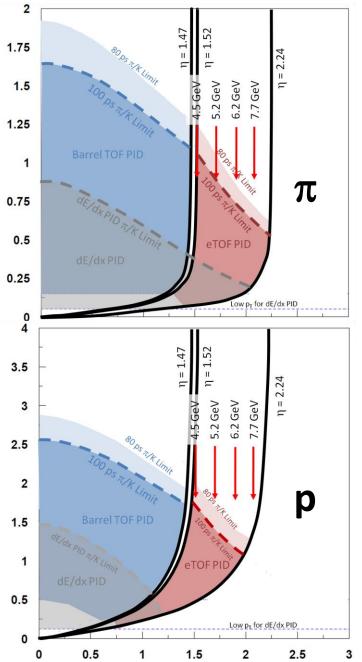


The Upgrades are Important for the FXT Program



Detects Particles in the 0 < η < 2 range π , K, p, d, t, h, α through dE/dx and TOF K⁰_s, Λ , Ξ , Ω , ϕ , ${}^{3}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ H through invariant mass

Particle Identification


Because the tracks are longer, on average, for FXT events than for collider events, the resolutions for both dE/dx and $1/\beta$ are better in FXT mode than collider mode.

STAR

Acceptance for the FXT Program

FXT Energy √s _{NN}	Single Beam E _T (GeV)	Single beam E _k (AGeV)	Center-of- mass Rapidity	Chemical Potential µ _B (MeV)	Year of Data Taking
3.0	3.85	2.9	1.05	721	2018
3.2	4.59	3.6	1.13	699	2019
3.5	5.75	4.8	1.25	666	2020
3.9	7.3	6.3	1.37	633	2020
4.5	9.8	8.9	1.52	589	2020
5.2	13.5	12.6	1.68	541	2020
6.2	19.5	18.6	1.87	487	2020
7.2	26.5	25.6	2.02	443	2018
7.7	31.2	30.3	2.10	420	2020
9.1	44.5	43.6	2.28	372	2021
11.5	70	69.1	2.51	316	2021
13.7	100	99.1	2.69	276	2021

Beam Energy Scan Phase-II

Studying the Phase Diagram of QCD Matter at RHIC

A STAR white paper summarizing the current understanding and describing future plans

28 March 2014

The Goals of the Beam Energy Scan Program:
1) Find the disappearance of QGP signatures
2) Find evidence of a first-order phase transition
3) Find the possible Critical Point

The Fixed-Target Program will extend the search range for all of these features of the QCD phase diagram up to μ_B = 720 MeV

Collision Energy (GeV)	Fixed Target √s _{NN}	Center of Mass Rapidity	Single Beam Kinetic	Chemical Potential Collider	Chemical Potential μ _B (MeV)
19.6	4.471	1.522	8.87	206	589
14.5	3.904	1.370	6.32	264	633
11.5	3.528	1.253	4.82	316	666
9.1	3.196	1.134	3.62	375	699
7.7	2.985	1.049	2.92	422	721

Overall Run Status (2018)

Energy	Start	Finish	First Run	Last Run	HLTgood	Target
3.85 FXT	May 31 st	June 4 th	19151029	19155022	258 M	100 M
26.5 FXT	June 5 th	June 18 th	19156034	19169017	155 M	none
27 GeV	May 10 th	June 17 th	19139960	19168040	558 M	1000 M

Overall Run Status (2019)

Energy	Start	Finish	First Run	Last Run	HLTgood	Target
19.6	Feb 25 th	April 3 rd	20056032	20093036	582 M	400 M
14.6	April 4 th	June 3 rd	20094048	20154013	324 M	310 M
3.85 FXT	June 9 th	June 9 th	20160024	20160027	3.7 M	5 M
7.3 FXT	June 18 th	June 18 th	20169029	20169055	52.7 M	50 M
7.7	June 3 rd	June 27 th	20154047	20178014	2.9 M	4 M
4.59 FXT	June 28 th	July 2 nd	20179040	20183025	200.6 M	200 M
9.2	June 28 th	July 8 th	20179016	20189017	1.0 M	none
31.2 FXT	July 8 th	July 9 th	20190006	20190024	50.6 M	50 M
200	July 11 th	July 12 th	20192001	20193026	138 M	140 M

Overall Run Status (2020)

Energy	Start	Finish	First Run	Last Run	HLTgood	Target
11.5 GeV	Dec 10 th	Feb 24 th	20056032	21055017	235 M	230 M
31.2 FXT	Jan 28 th	Jan 29 th	21028011	21029037	112.5 M	100 M
9.8 FXT	Jan29 th	Feb 1 st	21029051	21032016	108 M	100 M
19.5 FXT	Feb 1 st	Feb 2 nd	21032049	21033017	118 M	100 M
13.5 FXT	Feb 2 nd	Feb 3 rd	21033026	21034013	103 M	100 M
7.3 FXT	Feb 4 th	Feb 5 th	21035003	21036013	117 M	100 M
5.75 FXT	Feb 13 th	Feb 14 th	21044023	21045011	115.6 M	100 M
9.2 GeV	Feb 24 th	Sep 1 st	21055032	21245010	161.8 M	160 M
26.5 FXT	July 29 th	Sep 14 th	21211028	21258004	316.9 M	none
7.7 GeV	Sep 2 nd	Sep 11 th	21246012	21255021	3.2 M	none

FXT with eTOF (2020 and 2021)

Energy	Percent w/ eTOF	HLTgood total	Target w/ eTOF		
31.2 FXT	90.4 %	101.7 M	100 M	ſ	
19.5 FXT	68.1 %	80.4 M	80 M		
13.5 FXT	86.3 %	88.9 M	70 M		
9.8 FXT	67.3 %	72.7 M	65 M	-	2020
7.3 FXT	90.9 %	106.4M	50 M		
5.75 FXT	86.0 %	99.4 M	70 M		
26.5 FXT	94.3 %	298.7 M	none	J	
3.85 FXT	98.8 %	305.3 M	300 M		
44.5 FXT	93.3 %	50.3 M	50 M		
70 FXT	97.5 %	50.4 M	50 M	ŀ	2021
100 FXT	99.8 %	50.6 M	50 M		
3.85 FXT				J	

STAR

Overall Run Status (2021)

Energy	Start	Finish	First Run	Last Run	HLTgood	Target
7.7 GeV	Jan 31 st	May 1 st	22031042	22121018	100.9 M	100 M
3.0 FXT	May 1 st	May 5 th	22121036	22125011	306.6 M	300 M
9.2 FXT	May 6 th	May 6 th	22126010	22126029	53.9 M	50 M
11.5FXT	May 7 th	May 7 th	22126045	22127018	51.7 M	50 M
13.7 FXT	May 8 th	May 8 th	22128001	22128011	50.7 M	50 M
0+0 200	May 11 th	Min Bias	22131011	22136010	403.9 M	400 M
0+0 200	May 16 th	Central	22136011	22141016	212.4 M	200 M
0+0 200	May 21 st	Flip Field	22141039	22144006	125.0 M	100 M
17.3 GeV	May 25 th	June 7 th	22145017	22158019	256.1 M	250 M
3.0 FXT	June 7 th	June 28 th	22159051	22179022	1796 M	1.7 B
d+Au 200	June 28 th	July 7 th	22180043	22188007	216.9 M	200 M
7.2 FXT	June 3 rd	July 3 rd	22154936	22184019	88.6 M	none

Probing Strangeness Canonical Ensemble with K-, phi(1020) and Xi- Production in Au+Au Collisions at sqrt{s NN} = 3 GeV Submitted Dec. 23, 2021 e-Print Archives (2108.00924)

Light Nuclei Collectivity from 3 GeV Au+Au Collisions at RHIC

Submitted Dec. 8, 2021, published Feb. 1, 2022 Phys. Lett. B **827** (2022) 136941 e-Print Archives (2112.04066)

Probing Strangeness Canonical Ensemble with K-, phi(1020) and Xi- Production in Au+Au Collisions at sqrt{s_NN}

<u>= 3 GeV</u> Submitted Dec. 23, 2021 e-Print Archives (2108.00924)

Light Nuclei Collectivity from 3 GeV Au+Au Collisions at RHIC

Submitted Dec. 8, 2021, published Feb. 1, 2022 Phys. Lett. B **827** (2022) 136941 e-Print Archives (2112.04066)

Measurements of Proton High Order Cumulants in sqrt{s_NN} = 3 GeV Au+Au Collisions and Implications for the QCD Critical Point Submitted Dec. 2, 2021 e-Print Archives (2112.00240)

Disappearance of partonic collectivity in 3 GeV Au+Au collisions at RHIC

Submitted Nov. 24, 2021, published Mar. 10, 2022 Phys. Lett. B **827** (2022) 137003 e-Print Archives (2108.00908)

Measurements of H3L and H4L Lifetimes and Yields in Au+Au Collisions in the High Baryon Density Region Submitted Oct. 18, 2021 e-Print Archives (2110.09513)