

25TH INTERNATIONAL
SPIN PHYSICS
SYMPOSIUM

The STAR Forward Upgrade

Carl Gagliardi

Texas A&M University

for the STAR Collaboration

Supported in part by:

Outline

- What is it?
- What science is it doing?

What is the STAR Forward Upgrade?

The STAR detector

- TPC provides tracking for $|\eta| < 1.5$
- Particle identification with dE/dx combined with Time-of-Flight
- Surrounded by electromagnetic calorimetry covering $-1 < \eta < 4$
- Complemented by many ancillary subsystems

The STAR Forward Upgrade

- Covers the pseudorapidity region $2.5 < \eta < 4$ where **STAR** formerly only had Pb-glass electromagnetic calorimetry
 - Rapidity coverage is the same as the EIC hadron arm
- Combines:
 - Charged particle tracking using Si detectors and small-strip Thin Gap Chambers (sTGC)
 - Electromagnetic and hadronic calorimetry with SiPM readout and new ADC+trigger electronics
- Measures $h^{+/-}$, $e^{+/-}$ (with good e/h discrimination), photons, π^0 , jets

Detector	pp and pA	AA
ECal	~10%/VE	~20%/√E
HCal	~50%/vE+10%	
Tracking	charge separation	0.2 <p<sub>T<2 GeV/c</p<sub>
	photon suppression	with 20-30% 1/p _T

Silicon detector

- Three disks, each with 12 modules
- Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in φ and coarse in R
- Material budget ~1.5% X₀ per disk
- Technology is similar to STAR Intermediate Silicon Tracker
 - Same APV25-S1 front-end chip
 - Reuses the IST data acquisition and cooling systems

Silicon detector

- Three disks, each with 12 modules
- Each module includes 3 single-sided double-metal mini-strip sensors (Si from Hamamatsu)
 - Fine granularity in φ and coarse in R
- Material budget ~1.5% X₀ per disk
- Technology is similar to STAR Intermediate Silicon Tracker
 - Same APV25-S1 front-end chip
 - Reuses the IST data acquisition and cooling systems

STAR Forward Upgrade – SPIN 2023 – Carl Gagliardi

Small-strip Thin Gap Chambers

- Four planes, each consisting of four pentagonal modules
 - Double-sided sTGC with diagonal strips give *x*, *y*, *u* in each layer
 - Position resolution < 200 μm
- Material budget ~0.5% X₀ per layer
- Readout based on VMM chips
- Similar to the ATLAS sTGC system

Small-strip Thin Gap Chambers

- Four planes, each consisting of four pentagonal modules
 - Double-sided sTGC with diagonal strips give x, y, u in each layer
 - Position resolution < 200 μm
- Material budget ~0.5% X_0 per layer
- Readout based on VMM chips
- Similar to the ATLAS sTGC system

sTGC gas system

Gas cabinet

Front of the controls cabinet

Gas distribution panel

- sTGCs use a mixture of CO₂ and n-pentane
 - Extreme care needed for the highly flammable n-pentane!
 - Flash point 14 °C; explosive limits 1.5 7.8%
 - Boiling point of 36 °C further complicates things
- Has operated extremely well through major power failures and big storms

Simulated performance of the Forward Tracker

- Charge mis-ID rate less than 6% (8%) for $p_T < 5$ GeV/c and $\sqrt{s} = 510$ GeV (200 GeV)
- p_T resolution better than 35% for p_T < 5 GeV/c for both beam energies

Forward Calorimeter System (FCS).

7 m from the center of **STAR**

- Split into 2 movable halves
- Slightly projective

• ECal:

- Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm³
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per cell
 - 18 X_0 ; 0.85 nuclear interaction lengths
- Replaced PMTs with SiPM readout

HCal:

- Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: 10 x 10 x 84 cm³
 - Approximately 4.5 nuclear interaction lengths
- Uses same SiPM readout as ECal
- Developed in collaboration with EIC R&D

Preshower:

Split signals off from STAR EPD for triggering

Forward Calorimeter System (FCS).

- Entire FCS (ECal + HCal + electronics) was installed during 2020
 - Commissioned during the 2021 RHIC run
 - Extensive running with Au+Au at $\sqrt{s_{NN}}$ = 7.7 GeV
 - Brief runs with O+O and d+Au at $\sqrt{s_{NN}}$ = 200 GeV

7 m from the center of **STAR**

Split into 2 movable halves

- Reuse PHENIX Pb-Scintillator calorimeter
 - 1496 channels: 5.52 x 5.52 x 33 cm³
 - 66 sampling cells with 1.5 mm Pb / 4 mm Sc
 - 36 wavelength-shifting fibers per cell
 - 18 X_0 ; 0.85 nuclear interaction lengths
- Replaced PMTs with SiPM readout

• HCal:

- Fe/Sc (20 mm/3 mm) sandwich
 - 520 channels: 10 x 10 x 84 cm³
 - Approximately 4.5 nuclear interaction lengths
- Uses same SiPM readout as FCal
- Developed in collaboration with EIC R&D

Preshower:

Split signals off from STAR EPD for triggering

Forward Calorimeter System (FCS)

FCS readout and commissioning

- During the 2021 RHIC run, we:
 - Exercised the on-line machinery, monitoring systems, and slow controls
- Was ready to go on Day-1 of the 508 GeV pp run in 2022 (except for some gain tweaks)

Forward Upgrade timeline

- Summer, 2019: final funding was secured
- Fall, 2020: FCS and associated electronics installed
- Spring, 2021: FCS commissioned with beam
- August, 2021: FST installed
- October, 2021: sTGC installed
- November, 2021: FST and sTGC commissioned with cosmic rays
- November 29, 2021: cool down began for the 2022 RHIC run with 508 GeV pp collisions
- December 21, 2021: commissioning with beam completed, physics data-taking began

Forward Upgrade timeline

- Summer, 2019: final funding was secured
- Fall, 2020: FCS and associated electronics installed
- Spring, 2021: FCS commissioned with beam
- August, 2021: FST installed
- October, 2021: sTGC installed
- November, 2021: FST and sTGC commissioned with cosmic rays
- November 29, 2021: cool down began for the 2022 RHIC run with 508 GeV pp collisions
- December 21, 2021: commissioning with beam completed, physics data-taking began
- The STAR Forward Upgrade was completed on time and on budget, in spite of the pandemic!

Forward Upgrade timeline

- Summer, 2019: final funding was secured
- Fall, 2020: FCS and associated electronics installed
- Spring, 2021: FCS commissioned with beam
- August, 2021: FST installed
- October, 2021: sTGC installed
- November, 2021: FST and sTGC commissioned with cosmic rays
- November 29, 2021: cool down began for the 2022 RHIC run with 508 GeV pp collisions
- December 21, 2021: commissioning with beam completed, physics data-taking began
- The STAR Forward Upgrade was completed on time and on budget, in spite of the pandemic!
- And since then, it has **operated very smoothly** and taken excellent data throughout the **2022** (508 GeV polarized *pp* collisions) and **2023** (200 GeV Au+Au collisions) RHIC runs

Analysis status for the 2022 RHIC run

Energy of small (1-2 cell) ECal cluster with track pointing

Y of track projected to HCal

– Y of HCal cluster

- FCS ECal π^0 calibration complete
- Track finder and fitter can use sTGC first, then add FST, or the reverse
- Find nice correlations between reconstructed tracks and FCS hits
- Working on precise final alignments of sTGC and FST
- Working toward HCal MIP and J/ψ reconstruction

What is the science of the **STAR** Forward Upgrade?

STAR Forward Upgrade physics program

Forward-rapidity: $2.5 < \eta < 4$

A+A

Beam:

Full Energy AuAu

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η^4
- Longitudinal decorrelation up to n~4
- Global LambdaPolarization
- strong rapidity dependence

p+p & p+A

Beam:

508 GeV: p+p

200 GeV: p+p and p+A

Physics Topics:

- Sivers asymmetries for hadrons, (tagged) jets, and di-jets
- Collins asymmetries at high x transversity → tensor charge
- GPD E_g: gluon spinorbit correlations
- Gluon PDFs for nuclei
- R_{pA} for direct photons& DY
- Test of Saturation predictions through di-hadrons, y-Jets

Observables:

- Charged and neutral hadrons
- Inclusive jets and di-jets
- Hadrons in jets
- Photons
- Drell-Yan and J/Ψ di-electrons
- Lambda's
- Mid-forward and forward-forward rapidity correlations

Running periods:

- **STAR** alone:
 - 2021-22: 508 GeV polarized *pp*
- *STAR* in parallel with sPHENIX:
 - 2023 and 2025: 200 GeV Au+Au
 - 2024: 200 GeV polarized pp
 - Hope for polarized p+Au during 2024 or '25 (but not guaranteed)

Why Transverse Momentum Dependent (TMD) phenomena?

$$x f_1(x, k_T, S_T)$$

- Image the transverse and longitudinal (2+1d) structure of the nucleon and nuclei
 - Tomography of the nucleon!
- Access to transverse momenta at non-perturbative scales
 - Probe at the confinement scale
- Exhibit correlations arising from spin-orbit effects

Separating initial- and final-state effects

Sivers or twist-3 mechanisms:

- Signatures:
 - A_N for jets or direct photons
 - A_N for W^{+/-}, Z⁰, Drell-Yan
 - A_N for heavy flavor (gluon)
- Sivers NOT universal
 - Sign change from SIDIS to W, Z, and Drell-Yan

Collins or novel FF mechanisms:

- Signatures:
 - Collins effect
 - Interference fragmentation functions (IFF)
 - A_N for pions → novel FF
- Collins predicted to be universal

Transverse momentum dependent PDFs and FFs

Sivers effect:

Unpolarized partons with a spin-dependent intrinsic k_T

Collins effect:

Correlation between the polarization of a scattered quark and the momentum of a hadron fragment transverse to the quark momentum.

Requires quark transversity.

- Before *STAR*, spin-dependent TMDs came only from fixed target ep data: high x and low Q^2
 - Need measurements at high Q^2 and a broad x range
- STAR mid- plus forward rapidity provides excellent kinematic overlap with future EIC measurements
 - Forward upgrade provides access to quarks up to x ~ 0.5 and gluons down to x ~ 0.001
 - Need **high precision data in** *pp* **and DIS@EIC** to establish universality of TMDs

Inclusive transverse spin asymmetries at forward rapidities

Predicted asymmetries for $\pi^{+/-}$ from Kanazawa et al, PRD 89, 111501

- Described by an interplay of initial-state Sivers distribution or its Twist-3 analog, the Efremov-Teryaev-Qiu-Sterman (ETQS) function, and final-state Collins effect or the related Twist-3 function $H_{\rm FU}$
- A_N for $h^{+/-}$, direct photon, and π^0 can constrain the evolution and flavor dependence of the ETQS distribution and determine the role of H_{ELL}

Underlying mechanism for the large forward rapidity A_N?

STAR, PRD 103, 092009 $\pi^0 \, A_N$ $0.25 \quad \text{STAR} \quad p^\uparrow + p \rightarrow \pi^0 + X \quad \text{Isolated } \pi^0 \, 200 \, \text{GeV} \quad \text{Isolated } \pi^0 \, 500 \, \text{GeV} \quad \text{Non-isolated } \pi^0 \, 200 \, \text{GeV} \quad \text{Non-isolated } \pi^0 \, 200 \, \text{GeV} \quad \text{Non-isolated } \pi^0 \, 500 \, \text{GeV} \quad \text{Non$

STAR, PRD 103, 092009 EM-jet A_N

Boglione et al, PLB 815, 136135

- **STAR** finds A_N lower for non-isolated π^0 and higher multiplicity EM-jets
 - Provide substantial constraints on the Sivers effect at high x
 - Additional mechanism to produce large A_N for isolated π^0 ?
- **STAR** has also measured small Collins asymmetry for π^0 in EM-jet (not shown)
- **STAR** Forward Upgrade will enable forward rapidity asymmetry measurements of charged-tagged jets and di-jets, hadron-in-jet Collins asymmetry, and diffractive processes with rapidity gaps

How well can the Forward Upgrade do?

- A_N for full jet reconstruction, combined with charge-sign tagging of a hadron fragment with z > 0.5
 - Projected statistical uncertainties drawn on twist-3 predictions from Gamberg et al
 - Up to 10 σ separation between plus-tagged and minus-tagged jet A_N

Di-jet Sivers effect

- **STAR** has performed the first ever observation of the Sivers effect in di-jet production
- Mid-rapidity results at $\sqrt{s} = 200$ GeV show that up and down quarks have opposite sign spin-dependent $\langle k_T \rangle$
 - $\langle k_T \rangle_d \sim -2 \langle k_T \rangle_u$
 - Gluon+sea quarks have $\langle k_T \rangle \sim 0$
- $\eta^{\text{total}} = \eta_3 + \eta_4 \sim \ln(x_1/x_2)$
 - Mid-rapidity STAR only covers $|\eta_3 + \eta_4| < 3$
 - Sample *x* up to 0.21 (and down to 0.02)
- Forward Upgrade provides access to $|\eta_3 + \eta_4| \sim 6$
 - Sample x values from 0.001 to 0.5

Transversity and the Collins fragmentation function

- Quark polarization along the spin of a transversely polarized proton
 - Third collinear, leading twist distribution
 - Integral gives tensor charge critical input for low-energy beyond the Standard Model calculations
 - Difference between helicity and transversity directly related to parton orbital angular momentum
- Chiral odd
 - Much less data than for helicity
- Collins FF: azimuthal modulation of hadron fragments
 - Excellent testing ground for TMD factorization, universality, and evolution
- Before *STAR*, transversity only observed in SIDIS + e^+e^-
- Several recent global analyses, including:
 - Collins effect SIDIS input: IFF SIDIS + **STAR** pp input:
 - PRD 93, 014009 (2016)
- PRL 120, 192001 (2018)
- PRD 92, 114023 (2015)
- PRD 102, 054002 (2020)
 - All show large uncertainties

STAR Collins asymmetry measurements

- **STAR** has performed detailed measurements of the Collins asymmetry at mid-rapidity in both 200 and 510 GeV *pp* collisions
 - Span similar x range as existing SIDIS measurements
 - Q^2 values are one to two orders of magnitude higher than SIDIS at the same x

STAR Collins asymmetry measurements

- **STAR** has performed detailed measurements of the Collins asymmetry at mid-rapidity in both 200 and 510 GeV *pp* collisions
 - Span similar x range as existing SIDIS measurements
 - Q^2 values are one to two orders of magnitude higher than SIDIS at the same x
- The Forward Upgrade will extend the *x* range to above 0.5, while filling in the *Q*² region between SIDIS and mid-rapidity *STAR*
- Essential input for future universality studies at the EIC

Generalized parton distribution E_g

- Exclusive J/Ψ A_N in 200 GeV ultra-peripheral p+Au collisions is sensitive to the GPD E_q
 - $Q^2 \sim 10 \text{ GeV}^2$; $10^{-4} < x < 10^{-1}$
 - GPD E_g determines gluon spin-orbit correlations in the proton
- STAR performed a proof-of-principle measurement with the TPC during 2015

Generalized parton distribution E_g

- Exclusive J/Ψ A_N in 200 GeV ultra-peripheral p+Au collisions is sensitive to the GPD E_q
 - $Q^2 \sim 10 \text{ GeV}^2$; $10^{-4} < x < 10^{-1}$
 - GPD E_a determines gluon spin-orbit correlations in the proton
- STAR performed a proof-of-principle measurement with the TPC during 2015
- STAR Forward Upgrade will enable measurement at smaller $W_{\gamma p}$, where both the cross section and the signal are expected to be much larger

Nuclear parton distribution functions

- The Forward Upgrade will enable measurements of R_{pAu} for direct photon and Drell-Yan production at $\sqrt{s_{NN}} = 200 \text{ GeV}$
 - Direct photons will constrain the nuclear gluon distribution over 0.0025 < x < 0.025
 - Drell-Yan di-electrons will constrain the nuclear sea quark distribution over 0.001 < x < 0.01

Probing non-linear effects in QCD

- Forward rapidities at *STAR* provide the unique opportunity to investigate very high gluon densities with an unambiguous probe
 - Disappearance of the backward jet in p+A
- STAR π^0 π^0 correlations find:
 - Strong suppression at low p_T in p+A where gluon saturation is expected
 - The suppression follows the expected A^{1/3} dependence
 - No suppression at high p_T (larger x) outside the non-linear domain
- Such hadro-production measurements are essential to explore the fundamental universality of non-linear effects at EIC

Non-linear QCD with the Forward Upgrade

- The Forward Upgrade enables similar studies in $h^{+/-}-h^{+/-}$, di-jets, and γ -jet
- $h^{+/-}$ - $h^{+/-}$ can extend measurements to both lower and higher (x, Q^2) to map out the Q_s^2 boundary
- **Di-jet and γ+jet** are important complements: sample different mixes of WW and dipole gluon distributions

Flow measurements in Au+Au to constrain η/s

- η/s is expected to be smallest in the RHIC energy regime
- Flow measurements at forward rapidity are sensitive to the temperature dependence of η/s
- **STAR** Forward Upgrade measurements will be far more precise than previous PHOBOS measurements

Constrain the longitudinal structure of the initial state

$$r_n(\eta_a, \eta_b) = V_{n\Delta}(-\eta_a, \eta_b)/V_{n\Delta}(\eta_a, \eta_b)$$

where $V_{n\Delta}$ is the Fourier coefficient calculated with pairs of particles in different rapidity ranges

- r_n is sensitive to different initial state inputs
 - 3D glasma model: weaker decorrelation, describes CMS r₂, but not r₃
 - Wounded nucleon model: stronger decorrelation than seen in the data
- Precise measurement over a wide rapidity window will provide a stringent constraint

Global vorticity transfer

- How is the global vorticity transferred to the fluid?
- How does the local thermal vorticity of the fluid get transferred to spin angular momentum?
- Rapidity dependence of Λ global polarization will probe the nature of the global vorticity transfer
 - Initial geometry and local thermal vorticity + hydro predict opposite trends

Forward-rapidity: $2.5 < \eta < 4$

A+A

Beam:

Full Energy AuAu

Physics Topics:

- Temperature dependence of viscosity through flow harmonics up to η~4
- Longitudinal decorrelation up to n~4
- Global LambdaPolarization
- strong rapidity dependence

p+p & p+A

Beam:

508 GeV: p+p

200 GeV: p+p and p+A

Physics Topics:

- Sivers asymmetries for hadrons, (tagged) jets, and di-jets
- Collins asymmetries at high x transversity → tensor charge
- GPD E_g: gluon spinorbit correlations
- Gluon PDFs for nuclei
- R_{pA} for direct photons& DY
- Test of Saturation predictions through di-hadrons, γ-Jets

Conclusion

- The STAR Forward Upgrade was completed on time and on budget, in spite of the pandemic
- The STAR Forward Upgrade has operated very well during the 2022 and '23 RHIC runs
- The STAR Forward Upgrade enables a wide range of high-impact measurements in polarized pp collisions, in polarized and unpolarized p+Au collisions, and in Au+Au collisions
- Stay tuned!