Precision Measurement of Net-proton Number Fluctuations in Au+Au Collisions at RHIC

Yifei Zhang (for the STAR Collaboration)

 ∞

Outline

University of Science and Technology of China

SQM, June 6, 2024

Introduction

Experimental analysis

Results from BES-II

◆ Summary and outlook

The 21st International Conference on Strangeness in Quark Matter 3-7 June 2024, Strasbourg, France

 ∞

Introduction: QCD Phase Diagram

Key features of phase structure:

- ◆ QGP and hadronic phase
- Crossover at small μ_B (μ_B \overline{T} $<$ 2) – compatible to all experimental observations.
- Transition temperature $(T_c \sim 156 \text{ MeV})$ Lattice \leftrightarrow QCD and verified by exp. chemical freeze-out.
- 1st order phase transition at large μ_B and \leftrightarrow **critical end point (CEP)** are conjectured.

- ◆ QGP and hadronic phase
	- Crossover at small μ_B (μ_B \overline{T} $<$ 2) – compatible to all experimental observations.
- Transition temperature $(T_c \sim 156 \text{ MeV})$ Lattice \leftrightarrow QCD and verified by exp. chemical freeze-out.
- 1400
-
- 1st order phase transition at large μ_B and \leftrightarrow **critical end point (CEP)** are conjectured.

Sign problem in Lattice QCD at finite μ_B

Introduction: QCD Phase Diagram

A. Pandav, D. Mallick, B. Mohanty, PPNP. 125, 103960 (2022)

Experimentally searching and locating CEP is crucial.

Large uncertainties from models to locate the CEP.

correlation length: susceptibilities: χ_n^q At CEP: **CULLER expected to diverge**

Assumption: Thermodynamic equilibrium

Non-monotonic energy dependence of C_4/C_2 of conserved quantity **existence of a critical region**

M. A. Stephanov, PRL 107 (2011) 052301

◆ Direct comparison with lattice QCD, HRG, QCD-based model calculations

Introduction: Observables

correlation length: susceptibilities: χ_n^q At CEP: **Expected to diverge**

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL111, 062005(13)

 \overline{q}

 $q = B,Q,S$

$$
C_2 \sim \xi^2, C_4 \sim \xi^7
$$

$$
\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_6^q}{\chi_2^q}
$$

Allow the signal measurable

 \leftrightarrow Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL111, 062005(13)

Strasbourg, June 1, 2024 The Strasbourg, June 1, 2024 The Strasbourg, June 1, 2024

Direct comparison with lattice QCD, HRG, QCD-based model calculations

Introduction: Observables

Cumulants $n = E$ -by-E net-proton multiplicity $C_1 = \langle n \rangle$ $C_2 = \langle \delta n^2 \rangle$ * $\delta n = n - \langle n \rangle$ $C_3 = \langle \delta n^3 \rangle$ $C_4 = \langle \delta n^4 \rangle - 3 \langle \delta n^2 \rangle$ $C_5 = \langle \delta n^5 \rangle - 10 \langle \delta n^3 \rangle \langle \delta n^2 \rangle$ $C_6 = \langle \delta n^6 \rangle - 15 \langle \delta n^4 \rangle \langle \delta n^2 \rangle - 10 \langle \delta n^3 \rangle^2 + 30 \langle \delta n^2 \rangle^3$ Skewness: Asymmetry \overline{q} χ^q_{6} \overline{q} $S = \langle (\delta N)^3 \rangle / \sigma^3 = C_3 / C_2^{3/2}$ χ_2^q $q = B,Q,S$ Negative Skew Positive Skew Positive Kurtosis Kurtosis: Peakedness Leptokurtio **Negative Kurtosi** $\kappa = \langle (\delta N)^4 \rangle / \sigma^4 - 3 = C_4 / C_2^2$ Platykurti **Mesokurtic**

$$
C_2 \sim \xi^2, C_4 \sim \xi^7
$$

$$
\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\xi^7}{\chi_2^q}
$$

Allow the signal measurable

Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

R.V. Gavai and S. Gupta, PLB696, 459(11) S. Ejiri, F. Karsch, K. Redlich, PLB633, 275(06) A. Bazavov et al., PRL109, 192302(12) S. Borsanyi et al., PRL111, 062005(13)

 $\Gamma = \Gamma$

Introduction: Observables

$$
C_2 \sim \xi^2, C_4 \sim \xi^7
$$

$$
\frac{C_{4q}}{C_{2q}} = \frac{\chi_4^q}{\chi_2^q}, \frac{C_{6q}}{C_{2q}} = \frac{\chi_6^q}{\chi_2^q}
$$

Allow the signal measurable

Finite size/time effects reduces ξ Higher order \longrightarrow more sensitivity

Direct comparison with lattice QCD, HRG, QCD-based model calculations Cumulants

 $n = E$ -by-E net-proton multiplicity

$$
C_1 = < n>
$$

\n
$$
C_2 = < \delta n^2 > *_{\delta n = n - < n>}
$$

\n
$$
C_3 = < \delta n^3 >
$$

\n
$$
C_4 = < \delta n^4 > -3 < \delta n^2 >
$$

\n
$$
C_5 = < \delta n^5 > -10 < \delta n^3 > < \delta n^2 >
$$

\n
$$
C_6 = < \delta n^6 > -15 < \delta n^4 > < \delta n^2 > -10 < \delta n^3 >^2 + 30 < \delta n
$$

 $q = B,Q,S$

Factorial cumulants
\n
$$
n = E-by-E (anti)proton multiplicity
$$
\n
$$
\kappa_2 = -C_1 + C_2
$$
\n
$$
\kappa_3 = 2C_1 - 3C_2 + C_3
$$
\n
$$
\kappa_4 = -6C_1 + 11C_2 - 6C_3 + C_4
$$
\n
$$
\kappa_5 = 24C_1 - 50C_2 + 35C_3 - 10C_4 + C_5
$$
\n
$$
\kappa_6 = -120C_1 + 274C_2 - 225C_3 + 85C_4 - 15C_5 + C_6
$$

Non-CEP models with baryon conservation show a monotonic dependence vs. collision energy.

Experimental Search for CEP from BES-I

-
-

Strasbourg, June 1, 2024 **Yifei Zhang (USTC)** / SQM

$3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25 High precision, widest μ_B coverage to date

$3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25 High precision, widest μ_B coverage to date

Events used for net-proton fluctuation studies (Collider runs) BES-II vs BES-I

~x10-18 larger statistics 9.2 and 17.3 GeV added to energy scan

 $3 \leq \sqrt{s_{NN}}$ (GeV) $\leq 200 \rightarrow 750 \geq \mu_B$ (MeV) ≥ 25 High precision, widest μ_B coverage to date

STAR DETECTOR: BES-II Upgrade

Wide and uniform acceptance

Excellent PID and tracking

Modest rates

inner Time Projection Chamber

endcap Time-Of-Flight

Event Plane Detector

STAR Major Upgrades for BES-II

iTPC:

- \triangleright Improves dE/dx
- \triangleright Extends η coverage from 1.0 to 1.6
- \triangleright Lowers p_T cut-in from 125 to 60 MeV/c
- \triangleright Ready in 2019

Enlarge rapidity acceptance: $|\eta| \leq 1.0 \rightarrow |\eta| \leq 1.6$

- Improve particle identification: $p_T \ge 125$ MeV/c $\rightarrow p_T \ge 60$ MeV/c 2)
- Enhance centrality/event plane resolution, suppress auto correlations 3)
- Enable the fixed-target program: $\mu_B \leq 420$ MeV $\rightarrow \mu_B \leq 750$ MeV 4)

eTOF: \triangleright Ready in 2019

Full EPD has been installed

 \triangleright Forward rapidity coverage PID at η = 11.05 to 1.5 > Borrowed from CBM-FAIR

EPD:

- \triangleright Improves trigger
- \triangleright Better centrality & event plane measurements
- \triangleright Ready in 2018

• Defined using charged particle multiplicity measured by STAR • Exclude protons and antiprotons to avoid self correlation

Centrality Definition

Two centrality definitions with different acceptance:

Refmult3X (BES-II) > Refmult3 (BES-II) > Refmult3 (BES-I)

Best centrality resolution

- Uniform acceptance for (anti-) protons \leftrightarrow $|y|$ <0.5 with $|Vz|$ < 50cm
- (anti-)protons identified using TPC \leftrightarrow $dE/dx + TOF$
- Bin-by-bin purity $> 99\%$ in the full \blacklozenge acceptance range and all energies

Proton Identification

Event-by-Event Net-proton Number Distribution

- ◆ Raw net-proton number distributions from BES-II: Uncorrected for detector efficiency
- \leftrightarrow Mean increases with decreasing collision energy: Effect of baryon stopping

Improved statistics and systematics

Reduction factor in uncertainties on 0-5% C_4/C_2 **: BES-II vs BES-I**

Better statistics: \leftrightarrow

 $~\sim$ x10 – 18 larger statistics compared with BES-I

Better centrality resolution \leftrightarrow Corrected for finite centrality bin with event-number-weighted average

> $C_n = \sum_r w_r C_{n,r}$ where $w_r = n_r / \sum_r n_r$, n=1,2,3,4... Here, n_r is no. of events in r^{th} multiplicity bin

Larger acceptance and improved tracking ~10% higher proton efficiency compared to BES-I Better control on uncertainty on efficiency: 2% compared to 5% in BES-I Benefit from iTPC upgrade

STAR, PRC 104 (2021) 024902

13

X. Luo, T Nonaka, PRC 99 (2019), *X. Luo et al, J.Phys. G 40, 105104 (2013)*

 $Stat.\,errorC_r \propto$ σ^r \overline{N}

Latest Net-proton Fluctuation Results from STAR BES-II

 ∞

Cumulants vs Centrality and Collision Energies

Cumulant ratios vs Centrality and Collision Energies

Precision measurements: smooth variation across centrality and collision energy observed. Higher centrality resolution leads to lower ratios (especially in mid central collisions): Results from Refmult3X (BES-II) < Refmult3 (BES-II) < Refmult3 (BES-I)

 \leftrightarrow For 0-5% C_4/C_2 , weak effect of centrality resolution seen.

Average Number of Participant Nucleons (N_{part})

Energy Dependence of C₄/C₂: Comparison with BES-I

Energy Dependence of C₄/C₂: Comparison with BES-I

TO

BES-II results consistent with BES-I within uncertainties.

Deviation between BES-II and BES-I data

Effect of Centrality Resolution on C₄/C₂

Effect of Centrality Resolution on C₄/C₂

Cumulant Ratio C_4/C_2

◆ 0–5% centrality C_4/C_2 results show good agreement between Refmult3 and Refmult3X: **weak effect of centrality resolution.**

◆ Difference in 70–80% due to centrality resolution impact.

BES-II results shown hereafter are with Refmult3X

Cumulant Ratios

Net-proton cumulant ratios
 $\frac{10}{\pi}$ Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Net-proton cumulant ratios

Cumulant Ratios

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

 \leftrightarrow Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

V. Vovchenko et al, PRC 105, 014904 (2022)

Net-proton cumulant ratios

Cumulant Ratios

B. HRG CE: Thermal model with canonical treatment of baryon charge *P. B Munzinger et al, NPA 1008, 122141 (2021)*

 \bigotimes Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

Net-proton cumulant ratios

Cumulant Ratios

 \leftrightarrow Non-CP models used for comparison: A. Hydro: Hydrodynamical model

B. HRG CE: Thermal model with canonical treatment of baryon charge *P. B Munzinger et al, NPA 1008, 122141 (2021)*

 \bigotimes Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

V. Vovchenko et al, PRC 105, 014904 (2022)

C. UrQMD: Hadronic transport model

(All models include baryon number conservation)

Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)

B. HRG CE: Thermal model with canonical treatment of baryon charge *P. B Munzinger et al, NPA 1008, 122141 (2021)*

Energy Dependence: Model Comparison

100

200

 \circlearrowleft

STAR

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

Proton factorial cumulant ratios deviates from Poisson baseline at 0.

Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

C. UrQMD: Hadronic transport model

(All models include baryon number conservation)

Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)

B. HRG CE: Thermal model with canonical treatment of baryon charge *P. B Munzinger et al, NPA 1008, 122141 (2021)*

Proton factorial cumulant ratios deviates from Poisson baseline at 0. Antiproton κ_3/κ_1 , κ_4/κ_1 closer to 0.

Energy Dependence: Model Comparison

Non-CP models used for comparison: A. Hydro: Hydrodynamical model

V. Vovchenko et al, PRC 105, 014904 (2022)

 \bigotimes Smooth variation vs $\sqrt{s_{NN}}$ in C_2/C_1 and C_3/C_2 observed. C_4/C_2 decreases with decreasing energy.

Baryon number conservation may shift the non-CEP model baseline but won 't create criticality.

C. UrQMD: Hadronic transport model

(All models include baryon number conservation)

Bass S., et al. Prog. Part. Nucl. Phys., 41, 255 (1998)

C₄/C₂: Quantifying Deviation from Non-CP Models

C₄/C₂: Quantifying Deviation from Non-CP Models

Independent Observables: Common Structure

Baryon-Strangeness Correlation: *Hanwen Feng, CPOD 2024*

Outlook:

- Extend measurements to even higher orders of fluctuations: C_n , κ_n ($n = 1 6$). \leftrightarrow
- Examine transverse momentum dependence and rapidity dependence of fluctuations. \leftrightarrow
- Complete the measurements in Au+Au collisions at fixed target (FXT) energies. \leftrightarrow

 \blacklozenge Net-proton C_4/C_2 in 0-5% central collisions show a maximum deviation in 0-5% data w.r.t. various non-CEP model calculations and 70-80% data is observed at $\sqrt{s_{NN}}$ = 20 GeV with a

Summary:

P Precision measurement of net-proton number fluctuations vs. centrality and collision energy in Au+Au collisions from STAR BES-II reported. Compared to BES-I, we have better statistical precision, better centrality resolution, better control on systematics!

significance level of $3.2 - 4.7\sigma$.

Thank you for your attention !

Acknowledgements

 ∞

RHIC operation for successfully completing collection of BES-II data,

Tremendous work from the analysis group,

Organizers for giving this opportunity.