Ultra-Peripheral Collisions at STAR

W. Schmidke, BNL For the STAR Collaboration DPF2019 Northeastern Univ., Boston

- Ultra-Peripheral Collisions (UPC) & e⁺e⁻ processes
- The STAR detector & UPC data selection
- UPC J/ ψ in Au+Au
- UPC J/ ψ in polarized p \uparrow +Au

nucleon may emerge w/ full momentum, or dissociate into multiparticle final state

UPC processes in AuAu

- Observed here in low $p_{\tau} e^+e^-$ pairs
- Not sensitive to all w/ present statistics, as noted later

High statisticsJ/ψ photoproduction, m_{ee} ~ m_{J/ψ}: coherent, large nucleus ↔ low p_Tincoherent, small nucleon ↔ high p_Tincoherent w/ nucleon diss. ↔ higher p_T

• $\psi(2S) \rightarrow e^+e^-$, $m_{ee} \sim m_{\psi(2S)}$: coh. low p_{τ} , inc. high p_{τ} , nucl. diss. higher p_{τ} • Feed-down $\psi(2S) \rightarrow J/\psi + X$, $J/\psi \rightarrow e^+e^-$, $m_{ee} \sim m_{J/\psi}$: higher p_{τ} from 2S decay BR($\psi(2S) \rightarrow J/\psi + X$)·BR($J/\psi \rightarrow e^+e^-$) / BR($\psi(2S) \rightarrow e^+e^-$) ~ 4.6

The STAR detector, data selection

TPC: slow detector, many bunch ×ings tracking & dE/dx

TOF: fast detector, triggering

BBC: forward scint. around beam

Magnet

ZDC: $\pm 18m$ from IP 0° calorimeters, forward neutrons

Trigger:

Back-to-back showers in BEMC

Data sets: 2015 p \uparrow Au, L = 140 nb⁻¹ 2016 AuAu, L = 13 nb⁻¹

- veto BBC (reject hadronic central collisions)
- Au+Au: BEMC 'active', also require 2-6 hits in TOF p↑+Au: reject nuclear breakup, veto ZDCs <u>Offline selection:</u>
- Reject high activity events (# TOF hits, # BEMC showers)
- 2 tracks match BEMC showers, vertex in the STAR center
- Tracks well reconstructed, dE/dx select ee, reject hadron pairs

Au+Au: data features

- $p_T vs. m_{ee}$ for opp. sign pairs:
- High stat. features clear:
 - coh. J/ ψ @ low p_T & rad. tail lower m_{ee}, higher p_T
 - inc. J/ ψ @ high p_T
 - QED 2γ continuum @ low p_{τ}
- m_{ee} for opp./like-sign pairs:
- Small like sign contamination
 @ low m_{ee}

(& high p_{T} , not shown)

 Take as combinatoric bkg.: for final distributions take (opposite-like) sign

UPC procs→data comparison: m

• UPC processes (slide 3) generated w/ STARlight, modifications:

- $p_{_{T}}$ of coherent J/ ψ & 2 γ too high, reweighted to match data
- incoherent J/ ψ w/ nucleon dissociation $p_{_{T}}$ shape from HERA
- Passed processes through simulation of the STAR detector: templates

• Zoom $\psi(2S)$ region:

Fit sum templates to data

• p_⊤ < 0.15 GeV/c:</p>

UPC procs \rightarrow data comparison: p_{τ}

• Fix QED 2 γ & ψ (2S) from m_{ee} fit, fit sum others to data • 3.0 < m_{ee} < 3.2 GeV/c²:

<u>Good description of data, need all processes:</u> • coherent J/ ψ & QED @ low p₁

• feed-down from $\psi(2S)$ & incoherent J/ ψ @ mid p₊

• incoherent J/ ψ w/ nucleon dissociation for high p_T tail

Nuclear dissociation $\leftrightarrow J/\psi p_{\tau}$

- Zero Degree Calorimeters in each beam direction:
 - tag \geq 1 neutron with ~ nucleon beam energy (100 GeV)
- J/ ψ p_T: at least 1 n one side vs. no neutrons either side (0n0n)

- Incoherent processes ~always produce a neutron
- Coherent processes also produce neutrons: Coulomb dissociation
- OnOn fully described by coherent components & QED 2γ incoherent processes fit consistent w/ 0
- Vetoing on neutrons \Rightarrow clean sample of coherent processes
- Good starting point study of coherent p_{τ} , analysis continuing...

Coherent J/ ψ [t] distribution

- More developed STAR result: UPC J/ ψ p_r distributions from 2014
- Trigger required neutrons both sides: incoherent present, subtract

• CCK: Cepila, Contreras, Krelina Phys.Rev. C97 (2018) no.2, 024901 9

Generalized Parton Distributions

- GPDs: Correlated quark momentum and helicity distributions in transverse space
- Access to: 3D imaging of proton
 q & g orbital angular momentum L_g & L_g
- GPDs for each q,g: $H^{q,g}/E^{q,g}(x,\xi,t)$ conserve/flip nucleon helicity
- The GPDs E^{q,g} responsible for orbital angular momentum

*J.P. Lansberg, L. Massacrier, L. Szymanowski, J. Wagner, Phys.Lett. B793 (2019) 33-40)¹⁰

UPC processes in p⁺Au

UPC procs \rightarrow p \uparrow +Au data

As for Au+Au fit sum MC templates to data:

- Fix ratio J/ψ components (γp↑:γAu) from p_T fit (next step, iterate)
- \bullet Fit data to sum J/ ψ and QED 2γ
- Good description all features:
- J/ ψ peak location, width & rad. tail
- QED 2γ continuum
- Fix 2γ for p_{T} fit, fit sum $\gamma p \uparrow$, γAu

- γp↑ @ high p_T ~ AuAu incoherent
 γAu @ low p_T ~ AuAu coherent
- Want A^γ_N for γp↑ process, @ low
 p_T γAu & 2γ bkg., cut out
- For A^γ_N: 0.2 < p_τ < 1.5 GeV/c

UPC J/ ψ A^{γ}_N

• Count events $2.8 < m_{ee} < 3.2 \text{ GeV/c}^2$, $0.2 < p_T < 1.5 \text{ GeV/c}$ for:

p↑ beam spin up/down, J/ ψ cos(ϕ)>0 / cos(ϕ)<0 (total 231 events) • Correct for:

purity = 92%, p↑ beam polarization P = 61.3%

Result:

$$A_{N}^{\gamma} = 0.05 \pm 0.20 @ \langle W_{\gamma p} \rangle = 23.8 \text{ GeV}, \langle p_{T} \rangle = 0.48 \text{ GeV/c}$$

Null result, but proof of principle this measurement

Future: UPC J/ ψ A^{γ}_N

- These analyses used central STAR -1<η<1
- Already in STAR: iTPC tracking, endcap EMC triggering 1<η<2.2
- Coming soon 2021+ STAR Forward Upgrade w/ tracking & calorimetry 2.5<η<4
- Future RHIC p↑Au runs 2022+: measure @ lower W_{yp}
 - higher cross section (stats.)
 - larger A^{γ}_{N}
- Should be sensitive to e.g. Lansberg *et al.* models

Summary UPC

UPC in 200 GeV Au+Au

Large statistics, processes observed:

- J/ ψ : coherent, incoherent, incoherent w/ nucleon dissociation
- $\psi(2S)$: coherent in e⁺e⁻ & J/ ψ +X channels
- QED 2γ
- Nuclear dissociation tagged by neutrons in 0° calorimeters:
 - incoherent processes ~always produce neutron
 - veto neutrons \rightarrow clean sample coherent processes

<u>UPC in 200 GeV polarized p↑+Au:</u>

- Observed J/ ψ in $\gamma p \uparrow \& \gamma Au$, QED 2γ
- Proof of principle: measurement of A^γ_N ∝ E^g ~ gluon L_g null result here, but:
- Promising outlook for future RHIC runs

STAR Forward Diffraction

• STAR has a Roman Pot (RP) system:

RHIC proton beams, tag/measure scattered *p* w/ ~beam energy

- Recent data w/ pp, pAu, pAI @ √s=200 GeV, pp @ 510 GeV
- First results from *pp* 200:
 - elastic *pp* scattering \Rightarrow total *pp* cross section
 - single diffractive dissociation
 - central exclusive production

pp elastic scattering

- Fundamental pp physics measurement
- Measure back-to-back protons both beam directions, scattering angle ⇒ momentum transfer t:

Diffractive final states

- Final states measured in central STAR, tag proton in RP:
- Proton 1 side: single diffractive dissociation (SDD)
- p {X (M_x) p (t)
- Proton 2 sides: central exclusive production (CEP), 2 Pomeron fusion

Final state properties, input for models, e.g.:

 CEP m_{ππ} spectrum many features no model describes all features partial wave analysis?

Au+Au: m_{ee} fit

• m_{ee} fit not sensitive to different J/ ψ components:

- Fix ratio $\psi(2S) \rightarrow J/\psi + X / \psi(2S) \rightarrow e^+e^-$ by BRs
- Fix ratio (inc.:coh.) J/ ψ from p_T fit (next step, iterated)
- Fit sum of: J/ψ, ψ(2S), QED 2γ

Au+Au: m_{ee} fit

• On a linear Y scale:

- Deviation @ lowest m_{ee} : trigger threshold uncertainty
- Fit performed 2.2<m_{ee}<6 GeV/c²

Au+Au: p_{T} fit

- ${\scriptstyle \bullet}$ MC $p_{_{\rm T}}$ templates for two process:
 - incoherent $J/\psi \rightarrow e^+e^-$
 - feed-down incoherent $\psi(2S) \rightarrow J/\psi + X$, $J/\psi \rightarrow e^+e^-$

- ~indistinguishable
- treated as one component for comparison/fit to data

Au+Au: p_{τ} for 3 ZDC categories

Shown w/ vertical scale same range 10³:

- Coherent peak always present & prominent regardless of neutrons: Coulomb dissociation
- Incoherent components only present when some neutrons
 - \rightarrow fit consistent with zero for 0n0n

Coherent J/ ψ [t] distribution

- STARLIGHT: Klein, Nystrand, CPC 212 (2017) 258-268
- VMD and Glauber approach, includes effects of photon pT
- MS: Mäntysaari, Schenke, Phys.Lett. B772 (2017) 832-838
- Dipole approach with IPsat amplitude
- CCK: Cepila, Contreras, Krelina, Phys.Rev. C97 (2018) no.2, 024901
- Hot spot model for nucleons, dipole approach-
- MS & CCK scaled to XnXn using STARLIGHT

$p\uparrow +Au: p_{T}, m_{ee}$ distributions

• p_{T} vs $m_{p_{T}}$ for opp. sign pairs:

 Box shows fiducial region for A^γ_N measurement:
 2.8<m_{ee}<3.2 GeV/c²,
 0.2<p₁<1.5 GeV/c For final distributions take (opposite-like) sign

Cross-ratio (for non-spin experts)

- If have one beam w/ spin up, and detectors left (L) and right (R) of beam, can measure asym. but would need to know relative acceptances of L/R detectors
 - If have one detector left of beam, and beam bunches w/ spin up (+) and down (-), can measure asym., but would need to know relative luminosities of +/- beams
 - If have both L/R detectors and +/- bunches, acceptances and luminosities cancel out in the "cross-ratio"*:

$$\epsilon = \frac{\sqrt{N_{R+}N_{L-}} - \sqrt{N_{L+}N_{R-}}}{\sqrt{N_{R+}N_{L-}} + \sqrt{N_{L+}N_{R-}}}$$

*NIM 109 (1973) 41

*http://www4.rcf.bnl.gov/~cnipol/Documentations/Papers/TechniquesForMeasurementOfSpinHalfAndSpin1PolarizationAnalyzingTensors.pdf

