

STAR Near Term Upgrades

Qiu Hao LBNL

For the STAR Collaboration

- STAR current set up overview
- New physics direction for STAR heavy ion program
- Heavy Flavor Tracker and Muon Telescope Detector
 - Physics motivation
 - Design
 - Simulated performance
 - Status, schedule and performance
- Summary

STAR Current Set Up

Qiu Hao (LBNL)

New Physics Direction for STAR Heavy Ion Program

- Heavy flavor
 - $m_{b,c} >> T_{C}, \Lambda_{QCD}, m_{u,d,s}$
 - early produce
 - conserve in total number
 - less influenced
 - good probe to GQP
- Thermal di-lepton
 - Probing the temperature of the medium

```
Heavy quarkonium
```

MTD

STAR A HFT Physics Motivation

- HFT can be used to study heavy flavor production by the measurement of displaced vertices
 - $D^0 \to K^-\pi^+$ BR = 3.83 % ct ~ 120 µm
 - $\Lambda_{c}^{+} \rightarrow pK^{-}\pi^{+}$ BR = 5.0 % ct ~ 60 μ m
 - B mesons \rightarrow J/\Psi+X $\,$ B mesons \rightarrow e+X $\,$ ct ~ 500 μm
- •Total charm yieldbase line for charmonium coalescence• R_CP, R_AA of charm and bottomenergy loss in QGP• Charm (D^0) flowthermalization?• $c \bar{c} (D^0 \bar{D^0})$ angular correlationinteraction with the medium• Λ_c^+/D^0 test coalescence model

HFT Design

Sub detector	r (cm)	Sensitive units	σ _{R-φ} (μm)	σ _z (μm)	X/X ₀ (%)
Silicon Strip Detector	22	2 side strips with 95 µm pitch	20	740	1
Intermediate Silicon Tracker	14	500 µm x 1cm strips	170	1800	<1.5
PIXEL	2.5/8	18 µm pixel pitch	12	12	0.4/layer

Displaced Vertex

Qiu Hao (LBNL)

STAR $\Rightarrow D^0$, Λ_C Efficiency and Invariant Mass

Qiu Hao (LBNL)

STAR \star Error Estimation for D⁰ v₂ and R_{CP}

Qiu Hao (LBNL)

Error Estimation for Λ_{c} / D^{0}

Observation of an enhancement in baryon/meson ratio with light quarks is a support for quark coalescence model.

How about with heavy quarks?

Semi-leptonic Channels

Particle	ст(µm)	Mass(GeV)	Fragmentation Ratio q _{c,b} ->X	Branching Ratio X -> e
D ⁰	123	1.865	0.54	0.0671
D [±]	312	1.869	0.21	0.172
B ⁰	459	5.279	0.40	0.104
B [±]	491	5.279	0.40	0.109

Qiu Hao (LBNL) 2012 RHIC & AGS Annual Users' Meeting

Electron Efficiency and DCA

• ~60 % efficiency

STAR 🕁

• Dca can be used to fit yield from charm and bottom

STAR \Rightarrow Error Estimation for p_{τ} spectrum and B \rightarrow e / NPE

Non Photonic Electron (NPE) yield from charm and bottom can be measured separately by fitting dca distribution.

Error Estimation for v_2 of NPE from B and D

Case	Cut (cm)	e(D) eff. (%)	e(B) eff. (%)	r = e(B)/NPE
I	< 0.005	45.5	22.3	0.325
I	> 0.02	15.3	39.6	0.718

 $r * v_2(B) + (1-r) * v_2(D) = v_2(NPE)$

Current Status and Plan

- Just begin constructing pixel sectors
- 0~4 pixel sectors out of 10 in Run 13, no SSD or IST
- technical run possible for some physics measurements, like $D_0 R_{AA}$ and v_2
- The whole HFT (PXL+IST+SSD) expected

•

MTD Physics Motivation

- Di-muon pairs
 - QGP thermal radiation, quarkonia (Y different states), light vector mesons, resonances in QGP, and Drell-Yan production
- Single muons
 - semi-leptonic decays of heavy flavor hadrons
- Electron muon correlation
 - Distinguish thermal and charm production in di-lepton
- Advantages of muons over electrons:
 - No γ conversion, much less Dalitz decay
 - Less radiative energy loss, better \textbf{p}_{τ} and invariant mass resolution
 - Trigger capability from low to high $\mathbf{p}_{_{\mathrm{T}}}$

MTD Design

- Multi-gap Resistive Plate Chamber
 - (MRPC): gas detector, avalanche
- Acceptance: 45% azimuth at $|\eta|$ <0.5
- 118 modules, 1416 readout strips, 2832 readout channels
- electronics same as used in STAR-TOF

Efficiency Simulation

• muon-to-pion enhancement factor: 50-100

• muon-to-hadron enhancement factor: 100-1000 including track matching, tof

and dE/dx

Qiu Hao (LBNL)

J/ψ and Y with MTD

Error Estimation for J/ψ and Y

Qiu Hao (LBNL)

Distinguish Thermal and Charm Production in Di-lepton

Z. Xu, BNL LDRD 07-007; L. Ruan et al., Journal of Physics G: Nucl. Part. Phys. 36 (2009) 095001

- Thermal production of di-lepton \rightarrow temperature of the medium
- Thermal: e⁺e⁻ and µ⁺µ⁻
- $c \overline{c}$: e^+e^- , $\mu^+\mu^-$ and $e^+\mu^-$, $e^-\mu^+$

Current Status and Schedule

first look at electron muon correlation

 $J/\psi R_{AA}$, v_2 , Y R_{AA} , first look at different states

- Run 12, 13 trays, 10 %
- Run 13, 43 %
- Run 14, 80%
- Finish the project by Mar, 2014

Time and Position Resolution

Qiu Hao (LBNL)

Trigger Rate

- RHIC II luminosity in terms of collision rate: 40 k Hz;
- Au+Au projection: based on Run 10 prototype performance.

trigger time window	double-hit rejection factor	dimuon L0 trigger rate
2 ns	50	800 Hz
1.5 ns	116	$185 \mathrm{~Hz}$
1 ns	509	$80~\mathrm{Hz}$

Qiu Hao (LBNL)

- HFT
 - A rich set of physics programs including open and closed heavy flavor measurements will greatly enhance our understanding of QGP created at RHIC.
 - Technical prototype for Run 13, expect finishing for Run 14.
- MTD
 - Many interested physics studies will be enabled by a clear identification and trigger ability of muons, including QGP thermal radiation and quarkonia.
 - Desirable performance with trays installed, expect finishing in Run 14.

Thank You! :-)