Highlights from STAR

Leszek Kosarzewski

for the STAR collaboration

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

RHIC & AGS Users Meeting 2021

EUROPEAN UNION European Structural and Investment Funds Operational Programme Research, Development and Education

The work was also supported from European Regional Development Fund-Project "Center of Advanced Applied Science" No. CZ.02.1.01/0.0/0.0/16-019/0000778 and by the grant LTT18002 of Ministry of Education, Youth and Sports of the Czech Republic.

STAR experiment

2 Cold-QCD program

- Gluon helicity
- Transverse structure of the proton

Study of QCD matter phases - BES I+II+FXT

- Fluctuations
- Particle ratios
- Polarization
- Flow

STAR experiment

- TPC+iTPC $|\eta| < 1.5, 0 \le \phi < 2\pi$
 - Tracking, p, $\frac{dE}{dx}$ now improved!
- TOF+eTOF $-1.5 < \eta < 1, 0 \le \phi < 2\pi$
 - Particle identification based on time-of-flight
- EPD 2.14 < $|\eta| < 5.09, 0 \le \phi < 2\pi$
 - Independent event plane estimation

- BEMC $|\eta| < 1, 0 \le \phi < 2\pi$
 - Electron identification via E/p and EM shower shape
 - Trigger on high-p_T electrons
- MTD $|\eta| <$ 0.5, 45% in ϕ
 - Muon identification utilizing position and time-of-flight information
 - Dimuon trigger

Gluon helicity

Gluon helicity contribution ΔG to proton spin *S*:

$$S = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L_q + L_g$$

- Studied using collisions of longitudinally polarized proton beams
- Different spin configurations allow to measure longitudinal double spin asymmetry A_{LL}:

- At RHIC, a large fraction of jets come from qg and gg at low x_T
 - Sensitive to gluon distributions
 - Use jets to study gluon helicity

STAR: [Phys. Rev. D 103, L091103 (2021)]

- \bullet Largest longitudinal p+p dataset at 200 ${\rm GeV}$ taken in 2015 used
 - Improved statistical and systematic uncertainties
- Once added to global fits, it can reduce the uncertainty for polarized gluon distribution at $x_{\rm T}>0.05$

See talk by:

Xiaoxuan Chu, 8 June 2021, 09:50

Transverse structure of the proton

- Described by Transverse Momentum Dependent PDFs (TMDs, $f(x, k_T)$)
- Accessed by measuring Transverse Single Spin Asymmetry (TSSA)

$$A_N = rac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}}$$

- TSSA affected by:
 - Initial state effects, k_T of a parton Sivers function
 - Final state effects, fragmentation Collins function

See talk by:

Xiaoxuan Chu, 8 June 2021, 09:50

STAR: [Phys. Rev. D 103, 092009 (2021)]

- x_F longitudinal momentum fraction of π^0 with respect to the beam energy
- $\bullet\,$ TSSA studied for π^0 in jets vs. isolated in p+p collisions at 200 ${\rm GeV}$ and 500 ${\rm GeV}$
- Larger asymmetry for isolated than non-isolated π^0
 - Indication of diffractive process contribution to isolated π^0 A_N
- Weak energy dependence

Study of QCD matter phases

J. Cleymans [Phys. Rev. C 73, 034905 (2006)]

E	BES I					
	√ ^s NN [GeV]	Events [10 ⁶]	Year	μ_B [MeV]		
	200	900	2010	25		
	62.4	43	2010	73		
	54.4	550	2017	83		
	39	92	2010	112		
	27	70	2011	156		
	19.6	36	2011	206		
	14.6	12.6	2014	264		
	11.5	11.7	2010	315		
	7.7	4.3	2010	420		

Goals:

- Study phase transition
 - Hadron gas \rightarrow QGP
- Search for Critical Point
 - 1-st order phase transition \rightarrow crossover
- Search for turn-off of QGP signatures

How to study?

Events

[106]

560

582

TBD

324 235

162

101

- Study various observables vs. $\sqrt{s_{NN}}$ and μ_B
 - fluctuations
 - particle ratios
 - particle flow
- Beam Energy Scan BES
 - Collider mode
 - FXT fixed target mode
 - More efficient data taking at low- $\sqrt{s_{NN}}$
 - Lower $\sqrt{s_{NN}}$ and higher μ_B reach

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	FXT			
		Events [10 ⁶] 50.7 51.7 53.9 162.6 472+ 118	$\begin{array}{c} \sqrt{s_{NN}} \\ [GeV] \\ 5.2 \\ 4.5 \\ 3.9 \\ 3.5 \\ 3.2 \\ 3 \end{array}$	Events [10 ⁶] 103 108 169.7 115.6 200.6 565+

RHIC & AGS Users Meeting 10.6.2021

L. Kosarzewski

BES II

 $\sqrt{s_{NN}}$

[GeV] 27

19.6

17.1

14.6

11.5

9.1

Fluctuations are expected to be large around the Critical Point

The correlation length diverges

[V. Koch, QM2019]

- Can be measured with cumulants C_n, K_n of conserved quantities (Q,B,S)
 - C_n are sensitive to the correlation length higher orders more sensitive!
 - Ratios factor out the volume dependence
 - C_n follows Skellam distribution in absence of critical phenomena, so $\frac{C_4}{C_2} = \frac{C_6}{C_2} = 1$ as a statistical baseline
 - C_n are calculated using moments:

>

$$< m^n > = \sum_m m^n P(m)$$

 $< \delta m^n > = < (m - < m >)^n$
See talk by:

Risa Nishitani 8 June 2021, 12:40 $\begin{array}{l} < \delta N >= N - < N > \\ C_1 = < N > \\ C_2 = < (\delta N)^2 > \\ C_3 = < (\delta N)^3 > \\ C_4 = < (\delta N)^4 > -3 < (\delta N)^2 >^2 \end{array}$

- Net protons are a proxy for net baryons
- Related to baryon number conservation

STAR: [Phys. Rev. Lett. 126, 092301 (2021)]

- Non-monotonic dependence of net proton $\kappa\sigma^2$ on $\sqrt{s_{NN}}$ observed
 - 3.1σ significance
- A possible signature of Critical Point
- Better precision will be available with BES II data!

Fluctuations - net proton C_5 and C_6

- LQCD and FRG models predict negative values of higher cumulant ratios due to phase transition between partonic and hadronic phases
- STAR data show positive ratios for peripheral collisions (70-80% centrality)
- Data from 0-40% central Au+Au collisions:
 - $\frac{C_5}{C_1}$ negative at some energies (but large uncertainties $< 2\sigma$)
 - $\frac{C_6}{C_2}$ mostly negative
- Indication of increasing fluctuations at low energies

K/π vs. $\sqrt{s_{NN}}$

KaoS: [J. Phys. G 28, 2011 (2002)]

- E866/E917: [Phys. Lett. B490, 53 (2000)]
- NA49: [Phys. Rev. C 77, 024903 (2008)]
- NA49: [Phys. Rev. C 66, 054902 (2002)]
- STAR: [Phys. Rev. C 96, 044904 (2017)]
- E866/E917: [Phys. Lett. B476, 1 (2000)]
- Thermal: [Phys. Lett. B, 673, 142 (2009)]
- J. Cleymans: [Phys. Lett. B, 615, 150 (2005)]
- M. Gazdzicki: [Acta Phys Polon. B30,2705 (1999)]

Motivation: Strangeness/entropy ratio - Is there a change in degrees of freedom?

- Smooth K^+/π^+ ratio vs. collision energy
- STAR BES I data follow the trend vs. $\sqrt{s_{NN}}$
- Data well described by thermal model

Vortices in medium

- Large orbital angular momentum is produced in non-central heavy-ion collisions
- $\bullet\,$ Strong initial magnetic field $eB\sim m_\pi^2\sim 10^{14}\,T$ created mostly by the spectators

D. Kharzeev [Nucl Phys A803, 227 (2008)]

- · Vorticity in medium aligns spins of quarks through spin-orbit coupling
 - Same effect on q and \bar{q}
- Magnetic field also interacts with quark magnetic moments
 - Opposite effect on q and \bar{q}
- Use angular distributions of "self analyzing" hyperons to study *B* and *L* by measuring polarization:

$$P_H = rac{8}{\pi lpha_H} rac{< \sin(\Psi_1 - \phi_d^*) >}{\sigma_{\Psi_1}}$$

• Most vortical fluid in nature observed by STAR STAR: [Nature 548, 62 (2017)]

Energy dependence

STAR: [Phys Rev Lett 126, 162301 (2021)]

• First measurement of P_{Ξ} and P_{Ω} - global polarization

- $P_{\Xi} = 0.47 \pm 0.10(stat.) \pm 0.23(syst.)$
- $P_{\Omega} = 1.11 \pm 0.87 (stat.) \pm 1.97 (syst.)$
- $P_{\Lambda} = 0.24 \pm 0.03(stat.) \pm 0.03(syst.)$
- Energy dependence of P_{Ξ} follows the same trend as P_{Λ}

Flow

 Initial state spatial anisotropy is transformed into momentum anisotropy by the resulting pressure gradients

$$\frac{dN}{d\phi} = 1 + 2\sum_{n} v_n \cos(n(\phi - \Psi_n)) \qquad \qquad v_n = <\cos(n(\phi - \Psi_n)) >$$

• Flow coefficients are sensitive to both the medium's initial shape and the nature of interactions in it

 NCQ scaling breaks - hadronic interactions dominate

Md Nasim 8 June 2021, 14:35

- J/ψ can be used as a probe of QGP
 - Suppression of J/ψ production due to Debye-like screening of color charges T. Matsui [Phys. Lett. B, 178(4), 416-422 (1986)]

• Measured using nuclear modification factor RAA

$$R_{AA} = \frac{\sigma_{inel}}{\langle N_{coll} \rangle} \frac{\mathrm{d}^2 N_{A+A} / \mathrm{d} p_T \mathrm{d} y}{\mathrm{d}^2 \sigma_{pp} / \mathrm{d} p_T \mathrm{d} y}$$

- Other effects also play a role
 - Feed-down contributions
 - Modified nuclear PDFs
 - Comover interactions
 - Regeneration

J/ψ production at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$

- p_T dependence of R_{AA}
 - R_{AA} increases with p_T
 - More suppression in central collisions
- $\sqrt{s_{NN}}$ dependence of R_{AA}
 - No dependence is observed up to $\sqrt{s_{NN}} = 200 \text{ GeV}$ within uncertainties
 - · Model calculations are consistent with the data trend

X. Zhao, R. Rapp: [Rev. C 82 (2010) 064905 (private communication] L. Kluberg: [Eur. Phys. J. C 43 (2005) 145] NA50: [Phys. Lett. B 477 (2000) 28] ALICE: [Phys. Lett. B 734 (2014) 314] STAR: [Phys. Lett. B 771 (2017) 13 20] STAR: [Phys. Lett. B 797 (2019) 134917] ALICE: [Nucl. Phys. A 1005 (2021) 121769]

See talk by:		
	Yuanjing Ji	
	8 June 2021, 14:10	

J/ψ production in a jet in p+p at $\sqrt{s} = 500 \text{ GeV}$

- J/ψ production mechanism not well understood
- Are J/ψ produced directly or in association with a parton shower (jet)?

No significant z dependence observed within uncertainties

 \bullet Less isolated J/ψ than predicted by <code>PYTHIA8</code>

See talk b	y:	
	Yuanjing Ji	
	8 June 2021, 14:10	

- Cold-QCD and Spin

 - New published measurements of jet A_{LL} and π^0 TSSA Larger asymmetry for isolated π^0 than those in jets diffractive process contribution?
- Study of QCD phase diagram
 - Net proton fluctuations show non-monotonic dependence on $\sqrt{s_{NN}}$ indicative of critical point
 - Cumulant ratios $\frac{C_5}{C_1}$ and $\frac{C_6}{C_2}$ in central collisions mostly negative due to transition to partonic phase
 - $\frac{K^+}{-+}$ ratio vs. $\sqrt{s_{NN}}$ described by thermal model
- Global hyperon polarization
 - New data for Ξ and Ω show similar trend as Λ
- Flow: negative v_2 measured at $\sqrt{s_{NN}} = 3 \text{ GeV}$ using FXT data
 - Breaking of NCQ scaling hadronic interactions play an important role
- J/ψ production
 - New precise R_{AA} at $\sqrt{s_{NN}} = 54.4 \text{ GeV}$
 - Increases with p_T and decreases with centrality
 - No dependence on $\sqrt{s_{NN}}$ seen up to 200 GeV
 - J/ψ production in jet in p+p $\sqrt{s} = 500 \text{ GeV}$
 - No significant z dependence observed for the measured kinematics

Thank you for your attention!

STAR presentations at RHIC & AGS Users Meeting 2021

Recent Highlights from the STAR Cold-QCD Physics Program

- Xiaoxuan Chu (BNL), 8 June 2021 (Tuesday), 09:50
- Future Cold-QCD Physics Program with STAR
 - Ting Lin (Shandong University), 8 June 2021 (Tuesday), 11:20
- Net-particle Cumulants Measurement from STAR BES
 - Risa Nishitani, 8 June 2021 (Tuesday), 12:40
- Polarization Measurements from STAR BES
 - Subhash Singha (Kent State University), 8 June 2021 (Tuesday), 13:45
- Recent Open Heavy Flavor and Quarkonia Measurements from STAR
 - Yuanjing Ji (LBNL), 8 June 2021 (Tuesday), 14:10
- Yield Production and Flow Measurements from STAR BES
 - Md Nasim (IISER Berhampur, India), 8 June 2021 (Tuesday), 14:35

BACKUP

$$A_{UT}^{\sin(\phi)}\sin(\phi) = \frac{\sigma^{\uparrow}(\phi) - \sigma^{\downarrow}(\phi)}{\sigma^{\uparrow}(\phi) + \sigma^{\downarrow}(\phi)} \qquad \phi = \phi^{s} - \phi^{H}$$

- indicates the azimuthal asymmetry of a hadron originating from the fragmentation of a transversely polarized quark
- directly probes the fragmentation process contribution to the single spin asymmetry

See talk by:

Xiaoxuan Chu, 8 June 2021, 09:50