# STAR Heavy-Ion Results

**David Tlusty** For the STAR Collaboration Creighton University, Physics Department

Creighton UNIVERSITY

**College of Arts and Sciences** 







# Outline

### **★ QCD Phase Diagram of Nuclear Matter**

- Heavy-lon Collisions main tool to explore QCD
- Relativistic Heavy Ion Collider
- Introduction to STAR Experiment
- $\star$  Physics Observables Measured by STAR and Highlight Results
  - Bulk Properties of "hot" Matter
  - Anisotropic Flow
  - Production Supression and Enhancement
  - Hypertriton
  - Electromagnetic Processes
  - Global Hyperon Polarization
- $\star$  Detector Upgrades and Future Programs
- $\star$  Summary

**ICNFP 2019** 







**ICNFP 2019** 





- ★ The tempera measures the average exci energy per d freedom
  - early universe Big Bang
    - $(T >> 10^{10} K$ small baryon

 $\star$  The baryon d potential,  $\mu_{\rm B}$ , measure of t excess of ba over antibary atomic nucle 0 collapsed sta  $(\mu_B > 1 \text{GeV})$ 



**ICNFP 2019** 





- ★ The tempera measures the average excisenergy per d freedom
  - early universe Big Bang
    - € (T >> 10<sup>10</sup> K
       small baryon

The baryon of potential, μ<sub>B</sub>, measure of t excess of ba over antibary
 atomic nucle collapsed sta (μ<sub>B</sub> > 1GeV)





David Tlusty (Creighton)



David Tlusty (Creighton)



David Tlusty (Creighton)



### The Solenoidal Tracker At RHIC



ICNFP 2019







### The Solenoidal Tracker At RHIC

Magnet

EEMC

BEMC

MTD

HFT

ICNFP 2019

TPC

 tracking of charged particles covered in full 2π azimuth

RHIC

- ★ new subsystems
  - inner Time Projection
     Chamber (iTPC) upgrade
    - increased acceptance in pseudorapidty
  - Event Plane Detector (EPD)
  - endcap Time-Of-Flight (eTOF)
    - particle identification in forward direction





# Outline

### ★ QCD Phase Diagram of Nuclear Matter

- Heavy-lon Collisions main tool to explore QCD
- Relativistic Heavy Ion Collider
- Introduction to STAR Experiment

### **★** Physics Observables Measured by STAR and Highlight Results

- Bulk Properties of "hot" Matter
- **Anisotropic Flow**
- Hypertriton
- Production Supression and Enhancement
- Electromagnetic Processes
- Global Hyperon Polarization
- ★ Detector Upgrades and Future Programs ★ Summary

**ICNFP 2019** 







# Freeze-out Temperatures from STAR BES-I



### Freeze-out Temperatures from STAR BES-I





X



....

X







ICNFP 2019

# Anisotropic Flow

### $\star$ Asymmetry in initial geometry $\Rightarrow$ final-state momentum anisotropy

David Tlusty (Creighton)

N. Magdy - RHIC & AGS Users Meeting 2019

≰У

 $p_{y}$ 

 $p_x$ 

ICNFP 2019



8



### $\star dN/d\phi \propto (1+2\Sigma_n \nu_n \cos(n(\phi - \Psi_R)))$

- $V_1 \approx \text{directed}(V_1); V_2 \approx \text{elliptical}(V_2); V_3 \approx \text{triangular}(V_3) \text{flow}$
- $\nu_{\rm n}$  influenced by eccentricities,  $\epsilon_{\rm n}$ , fluctuations, system size, speed of sound,  $\overline{\mathbf{O}}$  $C_{s}(\mu_{B},T)$ , and transport coefficient,  $\eta/s(\mu_{B},T)$

**ICNFP 2019** 





### $\star dN/d\phi \propto (1+2\Sigma_n \nu_n \cos(n(\phi - \Psi_R)))$

- $V_1 \approx \text{directed}(V_1); V_2 \approx \text{elliptical}(V_2); V_3 \approx \text{triangular}(V_3) \text{flow}$
- $\mathbf{v}_n$  influenced by eccentricities,  $\mathbf{\varepsilon}_n$ , fluctuations, system size, speed of sound,  $C_{s}(\mu_{B},T)$ , and transport coefficient,  $\eta/s(\mu_{B},T)$

### ★ STAR presented

- Number of constituent quark scaling behavior of v<sub>2</sub>
- The scaling breakdown for φ meson at 11.5 and 7.7GeV
  - φ significantly lower collision x-section in hadron gas than other hadrons

David Tlusty (Creighton)

### **ICNFP 2019**

7.7 GeV

η-sub EP

0.1 - 27 GeV

0.5

STAR: PRC 93 (2016) 014907

Au+Au, 0-80%

**Ο**p ★π΄

**Δ**Λ ©K

∆∃ ∳K

**□**Ω **▼**∮

20

1.5

0.1

0.05

0.05

 $v_2/n_q$ 







### $\star dN/d\phi \propto (1+2\Sigma_n\nu_n \cos(n(\phi_a-\phi_b)))$

- $\nu_1 \approx \text{directed}(\nu_1); \nu_2 \approx \text{elliptical}(\nu_2); \nu_3 \approx \text{triangular}(\nu_3) \text{ flow, } \nu_n(ab) = \nu_n(a)\nu_n(b) + \delta_{NF}$
- $v_n$  influenced by <u>eccentricities</u>,  $\varepsilon_n$ , fluctuations, <u>system size</u>, speed of sound,  $c_s(\mu_B,T)$ , and <u>transport coefficient</u>,  $\eta/s(\mu_B,T)$

David Tlusty (Creighton)

**ICNFP 2019** 

### ab) = ν<sub>n</sub>(a)ν<sub>n</sub>(b)+δ<sub>NF</sub> speed of sound,





### \* asymmetry in initial geometry in a state in omentum ansatupy

 $p_{y}$ 

 $p_x$ 



### $\star dN/d\phi \propto (1+2\sum_{n} \nu_{n} \cos(n(\phi_{a} - \phi_{b})))$

Ani

- $v_1 \approx \text{directed } (v_1); v_2 \approx \text{elliptical } (v_2); v_3 \approx \text{triangular } (v_3) \text{ flow, } v_n(ab) = v_n(a)v_n(b) + \delta_N$
- *ν<sub>n</sub>* influenced by <u>eccentricities</u>, <u>ε<sub>n</sub></u>, fluctuations, <u>system size</u>, speed of sound, C<sub>s</sub>(μ<sub>B</sub>,T), and <u>transport coefficient</u>, <u>η/s</u>(μ<sub>B</sub>,T)

# $\star V_2 \propto \varepsilon_2 \& V_3 \propto \varepsilon_3 \&$ $n/s[T] \text{ reduces } V_n/\varepsilon_n$ acoustic scaling [PRL 122 (2019) 172301]: $\ln\left(\frac{v_n}{\varepsilon_n}\right) \propto -n^2 \left\langle \frac{\eta}{s}(T) \right\rangle \left\langle N_{ch} \right\rangle^{-1/3}$

*N*<sub>ch</sub>... charged particle multiplicity

**ICNFP 2019** 





### \* asymmetry in initial geometry in the other momentum anson opy

 $p_{y}$ 



### $\star dN/d\phi \propto (1+2\Sigma_n \nu_n \cos(n(\phi_a - \phi_b)))$

Anis

- $v_1 \approx \text{directed } (v_1); v_2 \approx \text{elliptical } (v_2); v_3 \approx \text{triangular } (v_3) \text{ flow, } v_n(ab) = v_n(a)v_n(b) + \delta_N$
- γ<sub>n</sub> influenced by <u>eccentricities</u>, ε<sub>n</sub>, fluctuations, <u>system size</u>, speed of sound, c<sub>s</sub>(μ<sub>B</sub>,T), and <u>transport coefficient</u>, η/s(μ<sub>B</sub>,T)

0.30

0.20

 $v_2/\epsilon_2$ 



David Tlusty (Creighton)

STAR: PRL 122 (2019) 172301

U+U 🛏

Au+Au 🛏



C

333

# Elliptical Flow in Small Systems

### ★ Small Systems - low multiplicity p+Au, d+Au

- v<sub>2</sub> extracted from two particle correlation
- Long range nonflow contribution (near side ridge) significant



★ Collectivity plays an important role for the flow in small systems

David Tlusty (Creighton)





# Elliptic Flow of D<sup>o</sup> Mesons



★ Strong collective behavior of charm quarks

David Tlusty (Creighton)

ICNFP 2019





### Poster #?







### **Directed Flow**

ICNFP 2019



★ Directed flow, v<sub>1</sub>, is sensitive to the EoS in the early stage of HIC

 $= \langle p, /p \rangle = \langle \cos \varphi \rangle$ 



### **Directed Flow**





- $\star$  Directed flow, v<sub>1</sub>, is sensitive to the EoS in the early stage of HIC
  - Net baryons show hints of a minimum and doublesign change  $\implies$  indicating the softening EoS
- $\star$  First v<sub>1</sub> measurement of D<sup>0</sup> mesons
  - The tilt of bulk x longitudinal density profile of heavy quarks
  - Rapidity dependent slope is much steeper for both 0  $D^0 + \overline{D^0}$  than for kaons
  - More in J. Bielcik talk (Tuesday 1pm, Room 2)





# Outline

**ICNFP 2019** 

### ★ QCD Phase Diagram of Nuclear Matter

- Heavy-Ion Collisions main tool to explore QCD
- Relativistic Heavy Ion Collider
- Introduction to STAR Experiment

### **★** Physics Observables Measured by STAR and Highlight Results

- Bulk Properties of "hot" Matter
- Anisotropic Flow
- **Production Supression and Enhancement**
- Hypertriton •
- Electromagnetic Processes
- Global Hyperon Polarization

### ★ Detector Upgrades and Future Programs

★ Summary







David Tlusty (Creighton)

**ICNFP 2019** 

14

, nti-)Hypertriten Binding Energy and Mass



★ Providing insight on Hyperon-Nucleon interaction - probe of a neutron star structure

★ Mass difference is the first test of the CPT symmetry in the light hyper-nuclei sector

David Tlusty (Creighton)

STA STAR

**ICNFP 2019** 





# Outline

### ★ QCD Phase Diagram of Nuclear Matter

- Heavy-Ion Collisions main tool to explore QCD
- Relativistic Heavy Ion Collider
- Introduction to STAR Experiment

### **★** Physics Observables Measured by STAR and Highlight Results

- Bulk Properties of "hot" Matter
- Anisotropic Flow
- Production Supression and Enhancement
- Hypertriton
- **Electromagnetic Processes**  $\odot$
- **Global Hyperon Polarization**

★ Detector Upgrades and Future Programs ★ Summary

**ICNFP 2019** 





### Coherent $\gamma + \gamma$ and $\gamma + Nuclear$ Processes







### photon-photon interaction $\propto Z^4$

★ Colliding ions generate strong electromagnetic fields  $\star$  Coherent interactions:  $\gamma$  + whole nucleus

David Tlusty (Creighton)

ICNFP 2019



Ann. Rev. Nucl. Part. Sci.55:271 (2005)

V=
ho,  $\omega$ ,  $\phi$ , / $\psi$ 

### photonuclear interaction $\propto Z^2$











David Tlusty (Creighton)



18



David Tlusty (Creighton)







David Tlusty (Creighton)

**ICNFP 2019** 



18



David Tlusty (Creighton)







David Tlusty (Creighton)

**ICNFP 2019** 





### photon-photon interaction $\propto Z^4$



# Low-pT J/ $\psi$ Enhancement





# Low-pT J/ $\psi$ Enhancement

# ★ Significant J/ $\psi$ enhacement at low p<sub>T</sub> relative to extrapolation



**ICNFP 2019** 





# Low-pT J/ $\psi$ Enhancement



 $\star$  Significant J/ $\psi$  enhacement at low p<sub>T</sub> relative to extrapolation ★ Low-p⊤ yield enhancement most consistent with the Nucleus+Spectator scenario in the coherent photoproduction model

[W. Zha et al., PRC 97 (2018) 044910] There may exist a partial disruption by hadronic interactions in the overlaping region



David Tlusty (Creighton)

**ICNFP 2019** 

Ann. Rev. Nucl. Part. Sci.55:271 (2005)

**V=ρ,ω,φ, J/ψ** 





# **Global Hyperon Polarization**





David Tlusty (Creighton)

ICNFP 2019

### ation



20



• Axial charge separation due to the Chiral Vortical Effect [PRC 97 (2018) 041902]  $\star$  Difference between P<sub>H</sub> and P<sub>H</sub> provide constraints on the magnitude and the lifetime of the magnetic field in heavy-ion collisions [PRC 95 (2017) 054902]

David Tlusty (Creighton)

**ICNFP 2019** 

### 20



# **Outlook: Forward Upgrade**

### STAR Forward Detectors: FTS + FCS



Forward Calorimeter System

**EMCal** 

Silicon + small-Strip Thin Gap Chambers (sTGC)

★ Positive internal review in November 2018 - will be ready for 2022 ★ Cold QCD and heavy-ion physics

David Tlusty (Creighton)







ICNFP 2019





Collectivity plays an important role for the flow in small systems
 Small droplets of QGP?

ICNFP 2019







Collectivity plays an important role for the flow in small systems
 Small droplets of QGP?

★ Strong collective behavior of charm quarks

ICNFP 2019







★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?

★ Strong collective behavior of charm quarks ★ Net-proton directed flow hints softening of equation of state

**ICNFP 2019** 





★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?

★ Strong collective behavior of charm quarks

★ Net-proton directed flow hints softening of equation of state

★ Charm baryon-to-meson production ratio comparable to light hadrons

David Tlusty (Creighton)

**ICNFP 2019** 

|             | 000000000 |           | 0000000      | 59595 |
|-------------|-----------|-----------|--------------|-------|
| 00000000    |           | 000000000 |              |       |
|             | 00000000  | 202020202 | 0202020      |       |
|             | 00000000  |           | 0000000      |       |
|             |           | 00000000  | 2020202      |       |
| 00000000    |           | 00000000  |              |       |
|             | 0000000   | 202020202 |              |       |
|             | 00000000  |           | 0000000      |       |
|             |           |           |              |       |
| 00000000    |           | 000000000 |              |       |
|             | 00000000  |           |              |       |
|             | 00000000  | 0000000   |              |       |
| 00000000    |           | 000000000 |              |       |
| 00000000    | 0000000   | 000000000 |              |       |
|             |           | 000000000 |              |       |
| KOYOYOYOY   | 000000000 |           |              |       |
|             | 00000000  |           |              |       |
| 000000000   | Sococococ |           |              |       |
| 0,0,0,0,0,0 |           |           |              |       |
| 00000000    | 00000000  |           |              |       |
|             |           |           |              |       |
| 000000000   |           |           |              |       |
| 00000000    |           |           |              |       |
| 202020202   |           |           |              |       |
|             |           |           |              |       |
| 00000000    |           |           |              |       |
| 000000000   |           |           |              |       |
| 000000000   |           |           |              |       |
|             |           |           |              |       |
| 000000000   |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             |           |           |              |       |
|             | OKOKOKOKO | 55555     | or or or the |       |

22



★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?

★ Strong collective behavior of charm quarks

★ Net-proton directed flow hints softening of equation of state

\* Charm baryon-to-meson production ratio comparable to light hadrons

★ CPT symmetry seems to be not violated in the light hyper-nuclei sector

**ICNFP 2019** 





**ICNFP 2019** 

- ★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?
- ★ Strong collective behavior of charm quarks
- ★ Net-proton directed flow hints softening of equation of state
- ★ Charm baryon-to-meson production ratio comparable to light hadrons
- $\star$  CPT symmetry seems to be not violated in the light hyper-nuclei sector
- ★ Ion collisions generate strong magnetic field
  - Dielectron excess yield at low  $p_T$  is dominated by photon-photon interactions
  - Significant J/ $\psi$  enhacement at low p<sub>T</sub>





- ★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?
- ★ Strong collective behavior of charm quarks
- ★ Net-proton directed flow hints softening of equation of state
- ★ Charm baryon-to-meson production ratio comparable to light hadrons
- $\star$  CPT symmetry seems to be not violated in the light hyper-nuclei sector
- ★ Ion collisions generate strong magnetic field
  - Dielectron excess yield at low  $p_T$  is dominated by photon-photon interactions
  - Significant J/ $\psi$  enhacement at low p<sub>T</sub>
- ★ Global Hyperon polarization decreases at higher energies
  - Constraints on the magnitude and the lifetime of the magnetic field in heavy-ion collisions

**ICNFP 2019** 





- ★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?
- ★ Strong collective behavior of charm quarks
- ★ Net-proton directed flow hints softening of equation of state
- ★ Charm baryon-to-meson production ratio comparable to light hadrons
- $\star$  CPT symmetry seems to be not violated in the light hyper-nuclei sector
- ★ Ion collisions generate strong magnetic field
  - Dielectron excess yield at low  $p_T$  is dominated by photon-photon interactions
  - Significant  $J/\psi$  enhacement at low  $p_T$
- ★ Global Hyperon polarization decreases at higher energies
  - Constraints on the magnitude and the lifetime of the magnetic field in heavy-ion collisions
- ★ Beam energy scan phase II is ongoing





- ★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?
- ★ Strong collective behavior of charm quarks
- ★ Net-proton directed flow hints softening of equation of state
- ★ Charm baryon-to-meson production ratio comparable to light hadrons
- $\star$  CPT symmetry seems to be not violated in the light hyper-nuclei sector
- ★ Ion collisions generate strong magnetic field
  - Dielectron excess yield at low  $p_T$  is dominated by photon-photon interactions
  - Significant J/ $\psi$  enhacement at low p<sub>T</sub>
- ★ Global Hyperon polarization decreases at higher energies
  - Constraints on the magnitude and the lifetime of the magnetic field in heavy-ion collisions
- ★ Beam energy scan phase II is ongoing
- ★ Important upgrades in forward region





- ★ Collectivity plays an important role for the flow in small systems Small droplets of QGP?
- ★ Strong collective behavior of charm quarks
- ★ Net-proton directed flow hints softening of equation of state
- ★ Charm baryon-to-meson production ratio comparable to light hadrons
- $\star$  CPT symmetry seems to be not violated in the light hyper-nuclei sector
- ★ Ion collisions generate strong magnetic field
  - Dielectron excess yield at low  $p_T$  is dominated by photon-photon interactions
  - Significant  $J/\psi$  enhacement at low  $p_T$
- ★ Global Hyperon polarization decreases at higher energies
  - Constraints on the magnitude and the lifetime of the magnetic field in heavy-ion collisions
- ★ Beam energy scan phase II is ongoing
- ★ Important upgrades in forward region
- ★ Stay tuned many more exciting results are coming

David Tlusty (Creighton)









