Investigating Entanglement Enabled Spin Interference in photonuclear $\rho^0 \to \pi^+\pi^-$ and $\gamma\gamma \to \pi^+\pi^-$ in Au+Au collisions at STAR

Sam Corey (for the STAR Collaboration)

Abstract

In ultraperipheral collisions, the invariant mass spectrum of $\pi^+\pi^-$ pairs is very complex 1 due to the numerous production channels and intermediate states. The quantum ambiguity 2 between production channels, referred to as the Entanglement Enabled Spin Interference 3 (EESI) effect, leads to angular anisotropy in the final state. The most dominant contribution 4 to the invariant mass spectrum of $\pi^+\pi^-$ is $\gamma A \to \rho^0(770) \to \pi^+\pi^-$, but other photonuclear 5 (γA) and light-by-light $(\gamma \gamma)$ channels also must be considered. EESI between the $\gamma \gamma$ and 6 γA channels is expected to produce $A_{1\Delta\phi}$ and $A_{3\Delta\phi}$ signals. This new window into hadronic 7 light-by-light production may provide new theoretical constraints on the anomalous magnetic 8 moment of the muon, where the hadronic light-by-light contribution is one of the largest 9 uncertainties. 10 In this talk, the first measurement of EESI between photonuclear and light-by-light pro-

In this talk, the first measurement of EESI between photonuclear and light-by-light production of $\pi^+\pi^-$ pairs, including the strong EESI signal associated with the $f_2(1270)$ resonance, will be presented. The EESI observables are then used to isolate $\gamma\gamma \to \pi^+\pi^-$ in ultraperipheral Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV.