Jets and Heavy Flavor from STAR

Li Yi
Yale University
Santa Fe Workshop 2018
• High p_T hadron and Jets

• Quarkonium

• Open Heavy Flavor
Single Hadron High p_T Suppression

High p_T hadron suppression at RHIC and LHC energies
Single Hadron High p_T Suppression @ BES

Meson and Baryon: different R_{cp} trends
At high p_T, pion suppressed for $\sqrt{s_{NN}} > 27$ GeV
proton enhanced at all BES energies
Semi-inclusive Jet Measurements

Spectrum shift -> Energy transport out-of-cone

<table>
<thead>
<tr>
<th>System</th>
<th>R</th>
<th>Jet p_T (GeV/c)</th>
<th>Spectrum p_T shift (GeV/c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au+Au @ 200 GeV</td>
<td>0.5</td>
<td>10-20</td>
<td>-2.8 ± 0.2 ± 1.5</td>
</tr>
<tr>
<td>Pb+Pb @ 2.76 TeV</td>
<td>0.5</td>
<td>60-100</td>
<td>-8 ± 2</td>
</tr>
<tr>
<td>p+Pb @ 5.02 TeV</td>
<td>0.4</td>
<td>15-50</td>
<td>abs shift < -0.4</td>
</tr>
</tbody>
</table>

Smaller shift at RHIC than LHC

→ lower energy loss at RHIC
but larger $\Delta p_T/p_T^{jet}$ at RHIC

★ No Glauber/N_{coll} needed

p+Au h-jet coming

Au+Au γ-jet coming
Inter-jet Broadening: Scattering off the QGP

Conjecture for weak coupling:
dominated by single hard Molière scattering at “sufficiently large” $\Delta \phi$

No significant evidence for large-angle scattering in central Au+Au

d’Eramo et al., JHEP 1305 (2013) 031
STAR, PRC 96, 024905 (2017)
Photon-hadron Correlations

Calibrate initial parton energy
Avoid surface bias
Select more quark recoil jets

Absolute p_T rather than particle p_T fraction more relevant
Photon Triggered Recoil Jet

Jet-Hadron

$\sqrt{s_{NN}} = 200$ GeV

- $10 < p_T^{jet} < 15$ GeV/c
- $20 < p_T^{jet} < 40$ GeV/c
- $\xi = \ln(p_T^\gamma/p_T^{assoc})$

$p_T^{assoc} \sim 2$ GeV/c

Absolute p_T rather than particle p_T fraction more relevant
‘Hard Core’ Dijets

Au+Au w/o soft particles

Au+Au w/soft particles

locate hard core dijets

reconstruct matched dijets

\[p_T, \text{cut} = 2 \text{ GeV/c} \]
\[p_T, \text{Lead} > 20 \text{ GeV/c} \]
\[p_T, \text{SubLead} > 10 \text{ GeV/c} \]
\[|\Delta\phi - \pi| < 0.4 \]
Dijets Restore Balance with Low p_T

STAR, PRL 119, 062301 (2017)

\[
A_J = \frac{p_T^{\text{Lead}} - p_T^{\text{SubLead}}}{p_T^{\text{Lead}} + p_T^{\text{SubLead}}}
\]

Momentum balance restored to pp baseline for $R = 0.4$, after adding particle $< 2\text{GeV/c}$

For hard core matched dijets

credit: K. Jung
Dijet-Hadron Correlations

for **hard core** matched dijets

Background subtracted with Gaussian+constant fit

\[\Delta \phi < 0.71 \]

STAR Preliminary

\[\Delta \phi < 0.71 \]

STAR Preliminary

\[p_T^{assoc} > 2 \text{ GeV/c}: \text{No significant difference for jet constituent multiplicity} \]

But jet energy changed — \(A_J \) different

\[HT: E_T > 4.5 \text{ GeV} \]
Dijet-Hadron Correlations

for **hard core** matched dijets

Background subtracted with Gaussian+constant fit

\[\Delta \phi | < 0.71 \]

STAR Preliminary

\[\Delta \phi | < 0.71 \]

STAR Preliminary

HT: \(E_T > 4.5 \text{ GeV} \)

\[A_J \] sensitive to modification in few events

Effect diluted in ensemble measurements (dijet-hadron)

\(\rightarrow \) Dijet-Hadron \(A_J \) dependence
Jet Substructure: Soft Drop z_g

Goal: to search for modification of hardest jet splitting

$z_g = \min\left(\frac{p_{T1}}{p_{T1} + p_{T2}}, \frac{p_{T2}}{p_{T1} + p_{T2}}\right)$

z_g in **hard core** matched dijets with $p_{T,\text{cut}} > 0.2$ GeV/c

Credit: Marta Verweij

No significant splitting modification

Larkoski, *et al.*, JHEP05(2014)146
• High p_T hadron and Jets

• Quarkonium

• Open Heavy Flavor
Quarkonium Productions

• The goal: Evidence for deconfinement; Thermometer

• Formation:
 • Mechanisms not fully understood even in p+p
 • Feed down contribution

• Modification:
 • Cold nuclear effects
 • Hot medium effects

• J/ψ photoproduction
J/ψ Spectra in p+p Collisions

- CGC+NRQCD and NLO NRQCD (prompt) consistent with data (inclusive) at p+p @ 200 and 500 GeV

\[p+p @ 200 \text{ GeV} \]

\[p+p @ 500 \text{ GeV} \]

NLO NRQCD: Ma et al., PRL106 (2011) 042002
CGC+NRQCD: Ma, Venugopalan, PRL113 (2014) 192301
J/ψ vs. Event Activity in p+p

Stronger-than-linear growth for high p_T J/ψ

- Feed-down fraction depends on p_T
- χ_c, $\psi(2s)$, B-hadrons

- Prompt J/ψ in jet populated at low z
- Less isolated than expected at LHC

Discussions on MPI effect: ALICE, arXiv 1202.2816, 1505.00664

< TofMult > J/ψ event ≈ 2.6

< TofMult > MB event

LHCb, PRL 118, 192001 (2017)
Ψ(2S) to J/ψ Double Ratio in p+Au Collisions

Muon Telescope Detector (MTD) enables STAR’s first Ψ(2S) to J/ψ double ratio measurement in p+p and p+Au collisions:

\[1.37 \pm 0.42{\text{(stat.)}} \pm 0.19{\text{(syst.)}}. \]
J/ψ Suppression in Au+Au Collisions

Low p_T J/ψ in central collisions:

- PHENIX: PRL 98 (2007) 232301
- ALICE: PLB 734 (2014) 314
- ALI-PREL-121481

High p_T J/ψ in all centralities:

- STAR preliminary

$R_{AA}(200 \text{ GeV}) < R_{AA}(2.76 \text{ TeV}) \sim R_{AA}(5.02 \text{ TeV})$

Less regeneration at RHIC

$R_{AA}(200 \text{ GeV}) > R_{AA}(2.76 \text{ TeV}) \sim R_{AA}(5.02 \text{ TeV})$

Less color screening at RHIC
Production in p+p and p+Au Collisions

• Yields consistent with NLO model

• R_{pA} quantifies CNM effects
Suppression in Au+Au Collisions

Sequential melting observed at both RHIC and LHC energies

CMS, PLB 770 (2017) 357
Excess of J/ψ at Very Low p_T

- J/ψ $R_{AA} \sim 30$ at $p_T < 0.05$ GeV/c in 60-80% collisions

- No significant centrality dependence of the excess yield in 30-80% collisions, while hadronic production is small and expected to strongly depend on N_{part}
Photoproduction Model Comparison

Large flux of quasi-real photons makes a hadron collider also a photon collider

- Consistent with coherent photoproduction
- Central collisions have a larger discriminating power
- A novel probe to study the medium?
 - potential to discriminate dissociation and regeneration

Zha, et al., arXiv: 1705.01460
PHENIX, PLB 679 (2009) 321
Klein and Nystrand, PRL84 2330 (2000)
• High p_T hadron and Jets

• Quarkonium

• Open Heavy Flavor
Open Heavy Flavor Probes

Produced early and probe the full QGP history:

- Flavor-dependence of in-medium energy loss
 Nature of heavy quark-medium interaction

- Heavy quark collective behavior
 Degree of thermalization, spatial diffusion coefficient

- Heavy quark hadronization
 QGP dynamics
B vs D Mass Hierarchy of Energy Loss

Made possible by excellent Heavy Flavor Tracker (HFT) tracking resolution

Smaller suppression for electrons from B than D

★ High precision measurements coming
D⁰ Anisotropic Flow

Strong collectivity of D⁰ mesons
Consistent with charm quark achieving local equilibrium with the medium

★ D⁰ direct flow coming

STAR, PRL 118 (2017) 212301
Theory refs cited in paper
Heavy Quark Hadronization

Enhanced D_s/D^0 and Λ_c/D^0 ratios compared to Pythia
Charmed quarks may participate in coalescence hadronization

★★ Detailed measurements coming
Summary

• Significantly enhanced understanding of jet modifications at RHIC
 • total jet energy loss less than at LHC
 • lost energy re-emerges at low p_T
 • z_g unmodified for hard core jets

• Explore heavy-flavor interaction with medium
 • mass hierarchy of c/b-quark energy loss observed
 • c-quark ‘thermalized’
 • Quarkonium sequential melting, smaller regeneration than LHC

• Quarkonium formation and cold nuclear effect investigated

• Excess of J/ψ at very low p_T consistent with coherent photoproduction
Probing the jet modification at RHIC

- High p_T hadron suppression at BES (arXiv:1707.01988)
- pp in very good agreement with theory (Di-jets, PRD 95 (2017) 71103 (R))
- Unbiased recoil jets highly suppressed due to medium induced broadening
- Total E_{loss} less than at LHC (Hadron-jet correlations, PRC 96 (2017) 24905)
- Lost energy re-emerges at low p_T not z_T (γ-hadron correlations, PLB 760 (2016) 689)
- Di-jet energy imbalance largely recovered within $R=0.4$ when low p_T hadrons included (Di-jet A_J, PRL 119 (2017) 062301 - Editor's suggestion)
- z_g unmodified for hard core jets (preliminary release)
- γ-jet, jet in small systems, flavor jet ... (stay tuned)

Significantly enhanced understanding of jet modifications at RHIC
B/D -> e Mass Hierarchy of Energy Loss

Excellent Heavy Flavor Tracker (HFT) resolution
Distinguish different electron sources by DCA

\[R_{AA}^{B/D\rightarrow e} = \frac{1 - f_{AA}^{B/D\rightarrow e} (Data)}{1 - f_{pp}^{B/D\rightarrow e} (Data)} R_{AA}^{HF_e} (Data) \]

\[R_{AA}^{B\rightarrow e} > R_{AA}^{D\rightarrow e} \]

Consistent with mass hierarchy of energy loss
Non-prompt J/ψ R_{AA} in Au+Au Collisions

Fit pseudo proper decay length
Extract non-prompt J/ψ fraction

$$R_{AA}^{B \rightarrow J/\psi} = \frac{f_{Au+Au}^{B \rightarrow J/\psi}(Data)}{f_{p+p}^{B \rightarrow J/\psi}(Theory)} \times R_{AA}^{inc. J/\psi}(Data)$$

Strong suppression of $B \rightarrow J/\psi$ at high p_T (> 5 GeV/c)
Comparable with D^0
Non-prompt D^0 Suppression

Template fit on DCA distribution to extract $B \to D^0$ contribution

Less suppression for non-prompt D^0 than for inclusive D^0
Excess of J/ψ at Very Low p_T

- Significant J/ψ enhancement at $p_T < 0.2$ GeV/c in peripheral collisions
- No significant centrality dependence of the excess yield, while hadronic production is expected to strongly depend on N_{part}
Low pT J/ψ excess from coherence photoproduction

W. Zha, et al., arXiv: 1705.01460

Calculations from coherence photoproduction describe data
Suppression in Au+Au Collisions

- SBS (Strongly Binding Scenario): fast dissociation—potential based on internal energy.
- WBS (Weakly Binding Scenario): slow dissociation—potential based on free energy.
- Data seem to favor the SBS model

Strickland, Bazov, NPA 879 (2012) 25
No CNM, no regeneration
Emerick, Zhao, Rapp, EPJ A48 (2012) 72,
Includes CNM, SBS case
Liu, Chen, Xu, Zhuang, PLB 697 (2011) 32
Dissociation only for excited states, suppression of ground state due to feed-down, SBS