

Recent Jet and Heavy-Flavor Measurements from STAR

Alexander Jentsch (Brookhaven National Laboratory)

for the STAR Collaboration

Santa Heavy-Flavor and Jets Workshop

Feb. 2nd-5th, 2020

Why Heavy-Flavor and Jets?

- Formed in early, hard partonic scatterings (calculable in pQCD). → Probe entire evolution of the medium.
 - Partonic energy loss via modification of jets.
 - Flavor-dependent energy loss.
 - > Bulk (transport) properties of heavy-quarks (i.e. anisotropic flow).
 - Initial conditions (i.e. directed flow).
 - > Hadronization.

🥟 The "How": Overview of Measurements 🤻

❖Jets

- ➤ Di-jet imbalance
- ➤ Semi-inclusive jet spectra
- ➤ Event plane (path-length) dependence
- ➤ Jet-flavor dependence
- ➤ Angular scale of jets

Heavy-flavor

- ➤ Open heavy-flavor
 - Spectra and R_{AA}
 - \triangleright Charm anisotropic flow (v_2)
 - \triangleright Charm directed flow (v_1)
 - Charm & bottom HFE R_{AA}
- **≻**Quarkonia
 - ➤ Spectra and R_{AA}
 - ightharpoonup J/ ψ polarization

The STAR Detector

Muon Telescope Detector (MTD)

 Used for identifying di-muon pairs from quarkonia decay.

Barrel EM Calorimeter (BEMC)/EEMC

Neutral particles, particle energy, jets.

Time of Flight (TOF)

PID via measurement of velocity.

Time Projection Chamber (TPC)

- Main tracking volume.
- Allows extraction of \vec{p} .
- PID using TPC dE/dx.

Heavy Flavor Tracker (HFT)

 Used for rejecting enormous background in reconstructing open heavy-flavor mesons.

The STAR Detector

Barrel EM Calorimeter (BEMC)/EEMC

Neutral particles, particle energy, jets.

Neutral Jets.

Time Projection Chamber (TPC)

- Main tracking volume.
- Allows extraction of \vec{p} .
- PID using TPC dE/dx.

Charged Jets.

TPC+BEMC(EEMC) \rightarrow Full Jets!

The STAR Detector

Phys. Rev. Lett. 118 (2017) 212301

Heavy Flavor Tracker

(μπ) ^{XX} 120 STAR Au+Au @ 200 GeV, 0-80% <u>•</u> p+<u></u><u></u> ∘ K[±] π[±] Total Momentum p (Gev/c)

 Provides the pointing resolution needed for open heavy-flavor reconstruction.

Jets in Heavy-Ion Collisions at STAR

Di-Jet Imbalance

ightharpoonup Constituent $p_T^{Cut} > 2 \text{ GeV/}c$ (hard-core)

STAR

➤ Reduce BG and combinatorial jets

- ightharpoonup Constituent $p_{T}^{Cut} > 0.2 \text{ GeV/}c$
- Geometrically matched to the hard-core jet

• Hard-core jet vs. Matched jet

Di-Jet Imbalance

STAR, Phys. Rev. Lett. **119** (2017) 062301

- $\bullet \quad A_{J} = \frac{p_{T}^{Lead} p_{T}^{SubLead}}{p_{T}^{Lead} + p_{T}^{SubLead}}$
- Hard-core jet vs. Matched jet

- For R=0.4 hard-core jet, more di-jet momentum imbalance compared to p+p
 - Balance recovered when soft constituents are included (matched-jet)
- \triangleright For R = 0.2, balance no longer recovered in matched-jet

Softening of jet constituents and Broadening of the jet structure

Jet Geometry Engineering

- Building off the previous work, do this analysis more differentially!
 - Vary the jet definition $(R, \text{ constituent } p_T \text{ cut, ...}) \rightarrow \text{effectively control the path length and vertex of jets in the medium (Jet Geometry Engineering)}$

STAR

Jet Geometry Engineering

- Building off the previous work, do this analysis more differentially!
 - Vary the jet definition $(R, \text{ constituent } p_T \text{ cut, } ...) \rightarrow \text{effectively control the path length and vertex of jets in the medium (Jet Geometry Engineering)}$

• Matched jet with various hard-core constituent p_T cut and R

- \triangleright Imbalance at small R.
- ➢ Balance ONLY restored with increased R (~0.35) when soft particles are included.

STAR

Semi-Inclusive Spectra

- \triangleright Strong suppression via I_{CP}
- \blacktriangleright Medium-induced broadening \Leftarrow Comparison between R=0.2 and R=0.5

Semi-Inclusive Spectra

γ-Triggered Recoil Jets

- $ightharpoonup \gamma_{dir}$ +jet and p⁰+jet
 - Path length
 - Color factor (toward q-jet)
 - Parton energy
- Similar level of suppression observed

STAR

Event-Plane Dependence

Event-plane Dependent Jet-hadron Correlations

- Previous jet-hadron correlations by STAR (Phys. Rev. Lett. 112 (2014) 122301)
 - \triangleright Suppression of high-p_T associated particle yield is balanced by low p_T associated particle enhancement

Event-Plane Dependence

No significant event plane dependence is observed within uncertainties

STAR

Flavor Dependence: D⁰+h Correlations

Submitted to PRC (arXiv: 1911.12168)

- Heavy Flavor Tracker (HFT) provides significantly better identification of heavy-flavor particles.
- $ightharpoonup D^0$ -hadron two-particle angular correlations with $D^0 o \pi^{\pm} K^{\mp}$ channel.
- \succ Correlations compared to light-flavor di-hadron correlations with similar trigger p_T .

Flavor Dependence: D⁰+h Correlations

arXiv: 1911.12168

Near-side width (phi) 2 1.8 di-Hadron, <p_T, trig. > = 5.7 GeV/c di-Hadron, <p_T, trig. > = 2.56 GeV/c PYTHIA D⁰+h[±], <p_T,p⁰ > = 3 GeV/c 1.2 D⁰+h[±] AuAu 200 GeV, <p_T,p⁰ > = 3 GeV/c 1.2 PYTHIA 50-80% 20-50% 0-20% Centrality (%)

- Significant increase in both near-side width and yield as a function of centrality.
- ➤ Similar width and yield results to light-flavor correlations Indication of similar behavior of correlations between light-flavor and charm-quarks

Jet Substructure in p+p

- > Experimental observables related to quantities in jet evolution
 - With SoftDrop algorithm (Phys. Rev. D 91, 111501 (2015))
 - ✓ Momentum scale, z_g
 - \checkmark Angular scale, R_g
 - Invariant jet mass, M

Based on declustering an angular-ordered tree

Measurements of these observables in pp set a vacuum baseline

$$z_g = \frac{\min(p_{T1}, p_{T2})}{p_{T1} + p_{T2}}$$

Other Jet Observables

- Momentum dependent narrowing of jet angular structure
- ho R_g overall shape in pp described by leading order MC generators

Open Heavy-Flavor in STAR

D⁰ and D[±] meson production

STAR

Decay channel	<i>cτ</i> [μm]	Branching ratio [%]
$D^0 \longrightarrow K^- + \pi^+$	122.9 ± 0.4	3.93 ± 0.04
$D^+ \longrightarrow K^- + \pi^+ + \pi^+$	311.8 ± 2.1	9.46 ± 0.24

STAR, PRC99 (2019) 034908

- \triangleright Suppression at high p_T increases towards more central collisions.
- $ightharpoonup R_{AA} < 1$ in the 0-10% Au+Au centrality interval for all p_T.
- ➤ D⁰ and D[±] mesons show same level of suppression.

D⁰ Anisotropic Flow

2014: STAR, PRL 118 (2017) 212301

Charm quarks acquire similar elliptic flow as light flavor quarks→ data suggest strong interaction of charm quarks with QGP.

 n_q = number of constituent quarks m_0/m_T = particle/transverse particle mass

Data described by models with temperature dependent charm diffusion coefficient $2\pi TD_s \sim 2-12$ predicted by lattice QCD.

D⁰ Directed Flow

 \underline{D}^0 : -0.086 ± 0.025 (stat) ± 0.018 (syst)

 D^0 : -0.075 ± 0.024 (stat) ± 0.020 (syst)

- > Sensitive to initial tilt of fireball and viscous drag on charm quarks in QGP.
- Figure 1.2 Effect of EM fields is of opposite sign on D^0 and anti- D^0 mesons and would not influence the average v_1 of D^0 mesons.

STAR

D⁰ mesons exhibit much larger v_1 than light flavor hadrons \rightarrow strong interaction of c-quarks with initially tilted source.

More data needed to draw conclusions on magnetic field induced v_1 splitting of c and anti-c quarks.

D_s/D⁰ enhancement

- Strangeness enhancement in QGP is expected to affect the yield of D_S
 (if c quarks participate in coalescence).
- ➤ D_S freezes out early and has smaller hadronic interaction cross-section compared to D⁰.

D_s/D^0 ratio:

- strong enhancement observed in central Au+Au collisions relative to PYTHIA
- qualitatively described by model calculations incorporating strangeness enhancement and (sequential) coalescence hadronization of charm quarks
- data suggest important role of coalescence in charm quark hadronization at RHIC energy.

Charm to Bottom via Single HFE

➤ It's been established that charm still interacts strongly with the medium, against early predictions — do we still expect a mass hierarchy with bottom?

Using HFE, separate contributions from ¹
 D→e and B→e using template fits to DCA distribution. ¹

- ► Indication of higher R_{AA} for B→e compared to D→e (2 σ significance): consistent with $\Delta E_c > \Delta E_b$
- ➤ Better precision measurements on the way with combined 2014+2016 datasets!

$\Lambda_{\rm c}$ and heavy quark hadronization

Supervised machine learning TMVA BDT analysis used to improve signal extraction.

- Strong enhancement of Λ_c/D^0 production in Au+Au collisions compared to PYTHIA with/without color-reconnection (CR).
- ▶ Data suggest coalescence hadronization of charm quarks in QGP at intermediate p_T
 (2-6 GeV/c) similar to light-flavor quarks.

Model calculations:

Ko: PRC 79, 044905 (2009), arXiv:1905.09774

Catania: EPJ C78 (2018) 348 Tshingua: arXiv:1805.10858 Rapp: arXiv:1910.14628

Heavy Quarkonia in STAR

J/ψ Suppression in Au+Au Collisions

STAR, PLB 797 (2019) 134917

- In more central collisions (0-40%), suppression is roughly constant with both centrality and p_T .
- > Different effects at play
 - \triangleright Dissociation: decreases with p_T due to formation time.
 - \triangleright Regeneration at low p_T .
 - Cold nuclear matter effects.

First final results from MTD in Au+Au collisions

J/ψ Suppression in Au+Au Collisions

STAR, PLB 786 (2018) 87

- ightarrow J/ ψ yield rises faster than linear vs. mid-rapidity activity.
 - Fastest rise at higher-p_T
- Possible reasons why

STAR

- Quarkonia produced in multi-parton interactions (MPI): PYTHIA8 and EPOS
- String percolation
- Color glass condensate (CGC)/saturation.

J/ψ Cross Section in p+p

STAR

STAR, PRD 100 (2019) 52009

- Inclusive J/ ψ cross-section with $\mu^+\mu^-$ decay channel at low-p_T and e⁺e⁻ decay channel at high-p_T.
- > Several models available
 - Improved color evaporation model (ICEM)
 - ➤ NLO non-relativistic QCD (NRQCD) applicable at high-p_T
 - CGC+NRQCD at low-p_T
- ➤ ICEM and NRQCD calculations are compared to data with bhadron feed-down contributions from FONLL added
 - ➤ Low-p_T: ICEM and CGC+NRQCD over-predict data assuming zero polarization.
 - ➤ High-p_T: ICEM and NLO NRQCD are consistent with data.

$\Upsilon(1S) \& \Upsilon(2S+3S)$

- \triangleright Combined results from e⁺e⁻ and μ ⁺ μ ⁻ decay channels.
- More suppression seen in more central events.
- No significant dependence on p_T.
- $\succ \Upsilon$ (2S+3S) more suppressed than Υ (1S) in more central collisions.
 - > Consistent with sequential melting.

Conclusions & Takeaways

STAR has a robust physics program for both jets and heavy-flavor. There are things I did not have time to cover!

- > Jets
 - Differential di-jet imbalance
 - > Semi-inclusive spectra
 - > Event plane dependence
 - > Flavor dependence
 - > substructure

Jet energy loss, partonic energy loss, flavor dependent energy loss.

- ➤ Open heavy-flavor
 - \triangleright D-meson spectra and R_{AA}
 - > HFE charm vs. bottom
 - > Charm anisotropic flow
 - > Charm directed flow
 - > Charm baryon spectra

Charm suppression, mass hierarchy (bottom and charm), bulk charm properties, hadronization

- > Heavy quarkonia
 - $> J/\psi R_{AA}$
 - $\succ \Upsilon(1S)$ vs. $\Upsilon(2S+3S)$
 - $> J/\psi$ cross section

 J/ψ suppression, sequential melting

Stayed tuned for more exciting results from STAR!

