

Recent Jet and Heavy-Flavor Measurements from STAR

Alexander Jentsch (Brookhaven National Laboratory) for the STAR Collaboration Santa Fe Heavy-Flavor and Jets Workshop Feb. 3rd-5th, 2020

- Formed in early, hard partonic scatterings (calculable in pQCD). → Probe entire evolution of the medium.
 - Partonic energy loss via modification of jets.
 - Modification of jet fragmentation.
 - Flavor-dependent energy loss.

∻Jets

Di-jet imbalance
Semi-inclusive jet spectra
Jet fragmentation functions
Jet+hadron correlations (jet shape)
Angular scale of jets
D⁰+hadron correlations

Why Heavy-Flavor and Jets?

- Formed in early, hard partonic scatterings (calculable in pQCD). → Probe entire evolution of the medium.
 - Partonic energy loss via modification of jets.
 - Modification of jet fragmentation.
 - Flavor-dependent energy loss.

- Bulk (transport) properties of heavy-quarks.
- Initial conditions.
- > Hadronization.

- ➢Open heavy-flavor
 - \succ Spectra and R_{AA}
 - Charm directed flow (v₁) & anisotropic flow (v₂)
 - Charm & bottom HFE R_{AA}
- ≻Quarkonia
 - ➢ Spectra and R_{AA}

The STAR Detector

The STAR Detector

The STAR Detector

 Provides the pointing resolution needed for open heavy-flavor reconstruction.

Jets in Heavy-Ion Collisions at STAR

Di-Jet Imbalance

- > Constituent $p_T^{Cut} > 2 \text{ GeV}/c$ (hard-core)
- Reduce BG and combinatorial jets

- > Constituent $p_{T}^{Cut} > 0.2 \text{ GeV}/c$
- Geometrically matched to the hard-core jet

• $A_J = \frac{p_T^{Lead} - p_T^{SubLead}}{p_T^{Lead} + p_T^{SubLead}}$

• Hard-core jet vs. Matched jet

Di-Jet Imbalance

STAR, Phys. Rev. Lett. **119** (2017) 062301

- $A_J = \frac{p_T^{Lead} p_T^{SubLead}}{p_T^{Lead} + p_T^{SubLead}}$
- Hard-core jet vs. Matched jet

- For R = 0.4 hard-core jet, more di-jet momentum imbalance compared to p+p \geq
 - Balance recovered when soft constituents are included (matched-jet)
- For R = 0.2, balance no longer recovered in matched-jet \succ

STAR

Softening of jet constituents and Broadening of the jet structure

- Building off the previous work, do this analysis more differentially!
 - ➤ Vary the jet definition (R, constituent p_T cut, ...) → effectively control the path length and vertex of jets in the medium (Jet Geometry Engineering)

10

- Building off the previous work, do this analysis more differentially!
 - ➤ Vary the jet definition (R, constituent p_T cut, ...) → effectively control the path length and vertex of jets in the medium (Jet Geometry Engineering)

• Matched jet with various hard-core constituent p_T cut and R

Imbalance at small R.

 Balance ONLY restored with increased R (~0.35) when soft particles are included.

11

Comparison of correlations of a neutral hadron (π^0) and a γ with jets provides quantitative understanding of parton energy loss in the QCD medium.

GeV, $p_{T,jet ch}$ = 15 GeV/c for 11-15 GeV.

Semi-Inclusive Spectra

Recoil jet with a jet resolution parameter of R_{jet} = 0.2 shows strong suppression, whereas a negligible suppression is observed for R_{jet} = 0.5, within uncertainties.

> I_{AA}^{PYTHIA} values are comparable between the two E_{T} trig bins.

STAR

The same level of suppression is seen between γ_{dir} +jet and π^0 +jet for different E_T trig bins and the two jet resolution parameters within uncertainties.

- Fragmentation function¹, $\frac{1}{N_{jet}} \frac{dN}{dz}$
- Distribution of longitudinal momentum fraction of particles with respect to the jet

Not previously measured at RHIC energy!

Jet fragmentation functions for the 40-60% centrality class for three p_{T,jet} ranges.

- > PYTHIA8 is tuned using LHC data needs further tuning for RHIC energy.
- \succ Ratios consistent with 1 for all p_T ranges.
 - 40-60% too peripheral?

STAR

Results for p+p and more-central events + higher statistics in progress!

Out-of-plan

Jet-Hadron Correlations

Event-plane (EP) Dependent Jet-hadron Correlations

- Previous jet-hadron correlations by STAR (Phys. Rev. Lett. 112 (2014) 122301)
- Can control the path-length of jet quenching by measuring as a function of centrality and event-plane angle.
 - Average path length out-of-plane > average path length in-plane

In-plane

STAR

Measure the EP dependence as a function of jet shape.

- Radial momentum distribution of the constituents.
- Discriminate models for quenching and quark vs. gluon energy loss.

$$\rho(r) = \frac{1}{\delta r} \frac{1}{N_{\text{jet}}} \sum_{\text{jet}} \frac{\sum_{\text{track} \in (r - \delta r/2, r + \delta r/2)} p_{\text{T,track}}}{p_{\text{T,jet}}}$$

Jet-Hadron Correlations

- **Recluster jet constituents with a smaller radius** identify regions of jet-like features within the mother jet
- Choose the leading and subleading Subjets

• z_{SJ} = subleading p_T / (subleading p_T + leading p_T);

 $\theta_{SJ} = \Delta R$ (subleading, leading)

The z_s distribution is biased toward harder splits.
 For both z_s and θ_s, no significant difference in shape due to jet quenching.

Flavor Dependence: D⁰+h Correlations

Submitted to PRC (arXiv: 1911.12168)

- Heavy Flavor Tracker (HFT) provides significantly better identification of heavy-flavor particles. \succ
- D^0 -hadron two-particle angular correlations with $D^0 \rightarrow \pi^{\pm} K^{\mp}$ channel. \succ
- Correlations compared to light-flavor di-hadron correlations with similar trigger p_T . \succ

Flavor Dependence: D⁰+h Correlations

arXiv: 1911.12168

- Significant increase in both near-side width and yield as a function of centrality.
- Similar width and yield results to light-flavor correlations Indication of similar behavior of correlations between light-flavor and charm-quarks

Open Heavy-Flavor in STAR

D^0 and $D^\pm\,meson$ production

- > Suppression at high p_T increases towards more central collisions.
- ightarrow R_{AA} < 1 in the 0-10% Au+Au centrality interval for all p_T.
- \succ D⁰ and D[±] mesons show same level of suppression.

D⁰ Anisotropic Flow

2014: STAR, PRL 118 (2017) 212301

Charm quarks acquire similar elliptic flow as light flavor quarks
 → data suggest strong interaction of charm quarks with QGP.

 n_q = number of constituent quarks m_0/m_T = particle/transverse particle mass

Data described by models with temperature dependent charm diffusion coefficient $2\pi TD_s\sim 2-12$ predicted by lattice QCD.

D⁰ Directed Flow

Sensitive to initial tilt of fireball and viscous drag on charm quarks in QGP.

> Effect of EM fields is of opposite sign on D^0 and anti- D^0 mesons and would not influence the average v_1 of D^0 mesons.

STAR

D⁰ mesons exhibit much larger v_1 than light flavor hadrons \rightarrow strong interaction of c-quarks with initially tilted source.

More data needed to draw conclusions on magnetic field induced v_1 splitting of c and anti-c quarks.

D_s/D^0 enhancement

- Strangeness enhancement in QGP is expected to affect the yield of D_s (if c quarks participate in coalescence).
- D_s freezes out early and has smaller hadronic interaction cross-section compared to D⁰.

D_s/D^0 ratio:

- strong enhancement observed in central Au+Au collisions relative to PYTHIA
- qualitatively described by model calculations incorporating strangeness enhancement and (sequential) coalescence hadronization of charm quarks
- data suggest important role of coalescence in charm quark hadronization at RHIC energy.

2

6

STAR

p_T (GeV/c)

Charm to Bottom via Single HFE

- > Indication of higher R_{AA} for $B \rightarrow e$ compared to $D \rightarrow e$ (2σ significance): consistent with $\Delta E_c > \Delta E_b$
- Better precision measurements on the way with combined 2014+2016 datasets!

$\Lambda_{\rm c}$ and heavy quark hadronization

 $\Lambda_{c}^{+} + \Lambda_{c}$

 $D^0 + \overline{D^0}$

2K_s⁰

 $\frac{p+\overline{p}}{\pi^+ + \pi^-}$

Supervised machine learning TMVA BDT analysis used to improve signal extraction.

STAR

- in Au+Au collisions compared to PYTHIA with/without color-reconnection (CR).
- Data suggest coalescence hadronization of charm quarks in QGP at intermediate p_T (2-6 GeV/c) similar to light-flavor quarks.

Model calculations: Ko: PRC 79, 044905 (2009), arXiv:1905.09774 Catania: EPJ C78 (2018) 348 Tshingua: arXiv:1805.10858 Rapp: arXiv:1910.14628

Heavy Quarkonia in STAR

STAR, PLB 797 (2019) 134917

- In more central collisions (0-40%), suppression is roughly constant with both centrality and p_T.
- Different effects at play
 - Dissociation: decreases with
 p_T due to formation time.
 - \succ Regeneration at low p_T .
 - Cold nuclear matter effects.

First final results from MTD in Au+Au collisions

- \succ J/ ψ yield rises faster than linear vs. mid-rapidity activity.
 - ➤ Fastest rise at higher-p_T
- Possible reasons why

- > Quarkonia produced in multi-parton interactions (MPI): PYTHIA8 and EPOS
- String percolation
- Color glass condensate (CGC)/saturation.

J/ ψ Cross Section in p+p

STAR, PRD 100 (2019) 52009

- ► Inclusive J/ ψ cross-section with $\mu^+\mu^-$ decay channel at low- p_T and e^+e^- decay channel at high- p_T .
- Several models available
 - Improved color evaporation model (ICEM)
 - ➤ NLO non-relativistic QCD (NRQCD) applicable at high-p_T
 - CGC+NRQCD at low-p_T
- ICEM and NRQCD calculations are compared to data with bhadron feed-down contributions from FONLL added
 - Low-p_T: ICEM and CGC+NRQCD over-predict data assuming zero polarization.
 - \succ High-p_T: ICEM and NLO NRQCD are consistent with data.

 $\Upsilon(1S) \& \Upsilon(2S+3S)$

34

- \succ Combined results from e⁺e⁻ and $\mu^+\mu^-$ decay channels.
- > More suppression seen in more central events.
- ➢ No significant dependence on p_{T.}

- $\succ \Upsilon$ (2S+3S) more suppressed than Υ (1S) in more central collisions.
 - Consistent with sequential melting.

STAR has a robust physics program for both jets and heavy-flavor. There are things I did not have time to cover!

> Jets

- Differential di-jet imbalance
- Semi-inclusive spectra
- Event plane dependence
- Flavor dependence
- ➤ substructure

Jet energy loss, partonic energy loss, flavor dependent energy loss.

STAR

- Open heavy-flavor
 - D-meson spectra and R_{AA}
 - ➢ HFE charm vs. bottom
 - Charm anisotropic flow
 - Charm directed flow
 - Charm baryon spectra

Charm suppression, mass hierarchy (bottom and charm), bulk charm properties, hadronization Heavy quarkonia $J/\psi R_{AA}$ $\Upsilon(1S) vs. \Upsilon(2S+3S)$ J/ψ cross section

 J/ψ suppression, sequential melting

Stayed tuned for more exciting results from STAR!