

XI International Conference on New Frontiers in Physics

Search for the Chiral Magnetic Effect by the STAR Experiment

Gang Wang (UCLA)

Supported in part by

for the STAR Collaboration

Office of Science

Chiral Magnetic Effect: $J \propto \mu_5 B$

charge separation across the reaction plane

Observables in search of CME

and to the background.

 $\Delta \gamma_{112} \equiv \gamma_{112}^{\rm OS} - \gamma_{112}^{\rm SS} > 0$

3

γ₁₁₂ measurements at RHIC/LHC

*κ*₁₁₂ measurements at RHIC/LHC

 $\kappa_{112} \equiv \Delta \gamma_{112} / (v_2 \Delta \delta)$ $\delta \equiv \langle \cos(\phi_{lpha} - \phi_{eta}) \rangle$

Normalized quantity facilitates comparison between data and model calculations (AMPT).

Compared with a pure-background model, the CME signal seems to disappear at 7.7 GeV and 2.76 TeV.

- very low beam energies: no chiral symmetry restoration?
- very high energies: no duration of the magnetic field?

Isobar collisions: prospect

Isobar collisions provide best possible control of signal and background.

2.5 B events per species:

- uncertainty of 0.4% in the $\Delta \gamma / v_2$ ratio.
- if $f_{\text{CME}} > 14\%$, $\Delta \gamma_{112} / v_2$ difference > 2%, yielding a 5 σ significance.
- f_{CME} is the unknown CME fraction in $\Delta \gamma_{112}$.

Compare the two isobaric systems:

- CME: B-field² is ~15% larger in Ru+Ru
- • Flow-related BKG: utilize $\Delta \gamma_{112} / v_2$
 - Nonflow-related BKG: almost same

Isobar program: data collection in 2018

Successful data taking of isobar collisions at RHIC/STAR

M. S. Abdallah *et al.* (STAR Collaboration) Phys. Rev. C **105**, 014901 – Published 3 January 2022

Isobar blind analysis

Centrality definition

Blind analysis: compare observables at matching centrality between two isobar systems.

MC-Glauber model fits the uncorrected multiplicity distribution. Woods-Saxon parameters with thicker neutron skin in Zr (no deformation) gives the best fit of the multiplicity distributions.

9

Multiplicity mismatch

Case-3 (thicker neutron skin in Zr and zero β_2) gives the best fit of the multiplicity distributions.

However, multiplicity (efficiency uncorrected) is larger in Ru+Ru than in Zr+Zr in such a matching centrality.

This can affect background (and signal) difference between the two isobaric systems.

Case-1 and **Case-2** give (almost) the same multiplicity in Ru+Ru and Zr+Zr, but they don't describe the multiplicity distribution so well.

In the end, the blind analysis sticks to Case-3.

v_2 and $\Delta \delta$

STAR has multiple sets of results with different kinematic cuts. I will use the set with smallest statistical errors as a demonstration.

Both v_2 and $\Delta\delta$ contribute to the background, and their ratios of Ru+Ru to Zr+Zr are not exactly unity.

At matching centrality, the below-unity $\Delta\delta$ ratio could even fake a CME signal.

$\Delta \gamma_{112}$ and κ_{112}

Matching centrality or matching multiplicity?

Qualitative change at matching multiplicity: κ_{112} ratios are more consistent with unity.STAR, Phys. Rev. C 105 (2022) 14901J. Jia, G. Wang, C. Zhang, arXiv:2203.12654

*к*₁₁₂ ratio ≈ 1+15% *f*_{СМЕ}

STAR, Phys. Rev. C 105 (2022) 14901

J. Jia, G. Wang, C. Zhang, arXiv:2203.12654

Post-blinding

 $\Delta \gamma_{112}$ results are consistent with preliminary background estimate within current uncertainty.

Why is f_{CME} so small? AVFD simulation:

 f_{CME} is smaller in isobar than Au+Au, especially when using the participant plane. smaller system \rightarrow larger fluctuation \rightarrow larger BKG & smaller CME signal \rightarrow lower f_{CME}

R. Milton et al, Phys. Rev. C 104 (2021) 064906

The bright side

The difference between different event plane types indicates a finite f_{CME} in Au+Au at 200 GeV. More data to come!

 $\Delta\gamma\{PP\} = \Delta\gamma_{CME}\{PP\} + \Delta\gamma_{BKG}\{PP\}$

Backup slides

Matching centrality or matching multiplicity?

The difference between matching centrality and matching multiplicity comes from a_0 , surface diffuseness.

Isobar: charge ceparation measured with R_{Ψ_2}

 σ_{ψ_2} is the Gaussian width of the respective $R(\Delta S'')$

Predefined CME signature:

 $1/\sigma_{\psi_2}^{\mathrm{Ru}+\mathrm{Ru}} > 1/\sigma_{\psi_2}^{\mathrm{Zr}+\mathrm{Zr}}$

No significant difference is observed between the two isobaric systems