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The Solenoidal Tracker at RHIC (STAR) 
Experiment seeks to study the makeup and structure 
of nuclear particles through heavy ions collisions 
and polarized proton-proton collisions. Until 
recently, only mid-rapidites could be measured 
based on the structure of the STAR solenoid. This 
left out crucial information about what happens at 
forward rapidities. Tracking in the forward rapidity 
region is crucial in measuring potential 
asymmetries caused by the Collins effect.
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Forward Tracking System

Figure 1: The STAR Detector, prior to its Forward Upgrade

Forward Upgrade
The Forward Upgrade extends the coverage of 
STAR to rapidities between 2.5 ≤ 𝜂𝜂 ≤ 4. The 
upgrade consists of two systems: the Forward 
Tracking System (FTS) and the Forward 
Calorimeter System (FCS) pictured below.

Figure 2: 3D Model of the Forward Calorimeter System
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Conclusion

The FTS is comprised of two detectors: the small-
strip Thin Gap Chamber (sTGC) and the Forward 
Silicon Tracker (FST). These detectors are oriented 
on the forward face of the solenoidal TPC. The 
FST is made up of three circular silicon plates, 
while the sTGC is made up of four pentagonal thin 
wire chambers. Each detector plane records hits 
from charged particles that pass through after a 
collision. Figure 3 below shows the orientation of 
both detectors relative to STAR.

Figure 3: 3D Model of the sTGC (green) and FST (red)

Track finding is the process of reconstructing 
charged particle trajectories from hits recorded in 
the planes of the FTS. Previously, this had been 
accomplished by “cutting” the data according to 
certain criteria. The process begins with taking all 
pairs of hits in the sTGC between two consecutive 
planes. Then the criteria are calculated for each 
pair using . This process of removing hits pairs that 
are deemed “fake” is repeated for several other 
criteria on hit pairs, then all possible three point
combinations are made and the criteria cutting 
continues. Eventually, all that is left are three hit 
combinations that are physically realistic. From 
here, it is easy to group two combinations to find a 
track through the sTGC. Once a track has been 
found, it is traced back to the FST. If a hit in the 
FST corresponds with this track, it is updated, and 
the process continues through all three planes.

The process of classifying “real” and “fake” pairs 
by cutting over criteria can be improved using 
machine learning. A Multi-Layer Perceptron 
(MLP) Classifier model from scikit-learn was 
trained and tested on raw pair coordinate data with 
no cuts. This allows for the algorithm to infer 
patterns in the data about whether the points 
between two planes could realistically form a 
"real" hit.. Additionally, this method can be used 
for the FST and sTGC separately, then combined 
in the end to improve the overall rate at which 
tracks are found.
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To test the viability of the MLP classifier, it was 
tested and trained over simulation data in the FST. 
The efficiency and purity were calculated over 
several different input parameters, as shown in 
Table 1. Each model was run 10 times with 
random states to ensure model stability.

When finding “real” or “fake” hit pairs, efficiency 
and purity of the results becomes important. 
Efficiency is defined as the ratio of “real” pairs 
kept vs. total “real” pairs. Purity is defined as the 
ratio of “real” pairs kept vs. total pairs kept. In 
general, efficiency is more important than purity 
because it is more important to keep as many 
“real” pairs in the result as possible. Any “fake” 
pairs that slip through can be found and removed at 
a later step. As shown in Figure 4, as more pairs 
are included the efficiency increases while the 
purity decreases. 

Figure 4: RZ Ratio Criteria, Efficiency, and Purity

The RZ ratio criteria is the ratio between the total 
distance between two points, ‘r’, and the distance 
between the two planes each point was on, ‘z’. 

Parameters Efficiency [%] Purity [%]

XYZ Pair
0.8723±0.0042 0.7690±0.0040

Rho, Phi, Z Pair
0.9052±0.0033 0.7846±0.0174

Previously used 
Criteria 0.8979±0.0034 0.7849±0.0058

Table 1: Comparison of Parameters in the FST MLP Classifier

For the FST, the rho, phi, and z data points achieved 
the greatest efficiency. This is likely caused by the 
physical makeup of the FST being spherical in 
nature. Overall, the cylindrical coordinates 
performed better than rectangular coordinates and 
the criteria used in previous track finding. When 
moving to track reconstruction, these parameters 
should be used to train the model for the FST.

In conclusion, the MLP Classifier from scikit-learn 
has a high efficiency in identifying “real” hit pairs 
in the FST. More research must be done to further 
expand machine learning to complete the track 
finding between the FST and sTGC, and to prove 
whether this method is viable. However, with an 
initial efficiency of  >90%, machine learning has 
promising applications for track finding in the 
STAR Forward Upgrade.
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