Search for Collectivity in Photonuclear Processes at RHIC using the STAR detector

Souvik Paul

Stony Brook University, souvik.paul@stonybrook.edu

for the STAR Collaboration

13th June 2025

The 2nd International Workshop on the Physics of Ultra Peripheral Collisions UPC 2025, Saariselkä, Finland

Supported in part by

How small can a Hydrodynamic droplet be?

Final state anisotropic flow dominated by hydrodynamics in hadronic collisions - AA, ³HeA, dA, pA

Collective behaviour in even smaller systems? e-+p/A, γ +p/A, e+e-, q/g

Origin of collectivity in systems without QCD objects in colliding beams

- Triggering photonuclear processes
- Purity of γ+Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Analysis Details
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

γA processes in Ultra-Peripheral AuAu Collisions

- In heavy-ion collisions, moving charged nuclei produce highly Lorentz contracted electromagnetic (EM) field
- EM field corresponds to large flux of virtual photons in ultra-peripheral collisions (b > 2R)
- Ultra-peripheral collisions minimize hadron-hadron interactions

γA processes in Ultra-Peripheral AuAu Collisions

- In heavy-ion collisions, moving charged nuclei produce highly Lorentz contracted electromagnetic (EM) field
- EM field corresponds to large flux of virtual photons in ultra-peripheral collisions (b > 2R)
- Ultra-peripheral collisions minimize hadron-hadron interactions
- 1. Photon-photon interactions (Breit-Wheeler Process)

γA processes in Ultra-Peripheral AuAu Collisions

- In heavy-ion collisions, moving charged nuclei produce highly Lorentz contracted electromagnetic (EM) field
- EM field corresponds to large flux of virtual photons in ultra-peripheral collisions (b > 2R)
- Ultra-peripheral collisions minimize hadron-hadron interactions

2. Photo-nuclear interactions

- Introduction to photonuclear processes
- Triggering photonuclear processes
- Purity of γ+Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Analysis Details
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

STAR Detector Upgrades & Dataset

Wider n coverage:

 $|\eta| < 1.0$ ---- $|\eta| < 1.5$ (iTPC)

2019+

 $2.13 < |\eta| < 5.1$ (EPD)

γ +Au

Year 2019 AuAu

$$-\sqrt{s_{NN}} = 200 \text{GeV}$$

- Events: ~100M

d+Au: Reference

Year 2016 dAu

$$-\sqrt{s_{NN}} = 39 \text{GeV}$$

Events: ~235M

Vertex Selection

$$-\sqrt{V_x^2 + V_y^2} < 2.0 \text{ cm}$$

< 2019

- $|V_z| < 100 \text{ cm}$
- TPC Vz VPD Vz (Vz_diff)
 - Vz_diff < 5 cm (dAu39)
 - Vz_diff > 10 cm (γAu)

Track Selection

- DCA < 3.0 cm (dAu39), DCA < 3.5 cm (γAu)
- pT > 0.1 GeV/c
- $|\eta| < 1.5$
- nHitsFit > 10, nHitsFitRatio > 0.52

Kinematic similarities between inclusive γ +Au and exclusive ρ -production

Photo-nuclear cuts decided based on "standard candle": Exclusive ρ -production as a trigger for inclusive $\gamma+A$ process

Events with only 2 iTPC tracks from $\rho \to \pi^+\pi^-$

Photo-nuclear cuts decided based on "standard candle":

Exclusive ρ -production as a trigger for inclusive $\gamma + A$ process

Asymmetric multiplicity and spectator distributions in γ +Au collisions

Two iTPC tracks with reconstructed ρ select $\gamma + Au \rightarrow \rho$ processes:

Small hits & east-west anti-correlation

Photonuclear Cuts

Exclusive ρ -production as a "standard candle" to define ZDC and EPD cuts for γ Au event selection

East γ -going side:

- ZdcAdcE < 120
- EpdMipE < 20
- ZdcAdcW > 100
- EpdMipW > 20

Photonuclear Cuts

Exclusive ρ -production as a "standard candle" to define ZDC and EPD cuts for γ Au event selection

Additionally, $Vz_diff > 10$ cm helps select asymmetric γAu event

Photo-nuclear cuts decided based on "standard candle": Exclusive ρ -production as a trigger for inclusive $\gamma+A$ process

- 1. Start with ZDC triggered Au+Au min-bias data
- 2. Select γ +Au $\rightarrow \rho$ events. Take events with only 2 iTPC tracks from $\rho \rightarrow \pi^+\pi^-$ to identify cuts on EPD and ZDC
- 3. Relax 2 iTPC track requirement and put detector cuts (EPD, ZDC) to trigger on γ +Au $\to X$
- 4. Put Vz difference cut for asymmetric event

- Introduction to photonuclear processes
- Triggering photonuclear processes
- ► Purity of γ +Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Analysis Details
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

Purity of γ Au collisions: Source of Hadronic Contamination

Process interested in:

- → UPC Photonuclear Collision
- ZDC (Au-going side) > 100
- Vz_diff > 10 cm

Purity of γ Au collisions: Source of Hadronic Contamination

Process interested in:

- → UPC Photonuclear Collision
 - ZDC (Au-going side) > 100
 - Vz_diff > 10 cm

Processes that contaminate:

- → Peripheral Hadronic Collision
- ZDC (Au-going side) > 100
- Vz_diff < 5 cm

Purity of γ Au collisions: Source of Hadronic Contamination

Process interested in:

- → UPC Photonuclear Collision
 - ZDC (Au-going side) > 100
- Vz_diff > 10 cm

ZDC (γ -going side)

Processes that contaminate:

- → Peripheral Hadronic Collision
- ZDC (Au-going side) > 100
- Vz_diff < 5 cm

Purity of γ Au collisions: Estimate of Hadronic Contamination

ZDC neutron distribution of γ +Au \rightarrow X closely resembles that of γ +Au $\rightarrow \rho$

Small hadronic contamination

- Introduction to photonuclear processes
- Triggering photonuclear processes
- Purity of γ+Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Analysis Details
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

Choice of dAu: Reference for yAu collisions

Choice of dAu: Reference for γ Au collisions

Expectation: $v_2(d+Au) \sim v_2(\gamma \rightarrow q\bar{q}+Au)$

Choice of dAu: Reference for yAu collisions

Expectation: $v_2(d+Au) \sim v_2(\gamma \rightarrow q\bar{q}+Au)$ OR $v_2(d+Au) > v_2(\gamma \rightarrow \rho+Au)$

- Measurements in γ Au processes at $W_{\gamma N} pprox$ 34 GeV, comparable to dAu collisions at $\sqrt{s_{NN}} =$ 39 GeV
- Similar multiplicity range for dAu and γ Au accessible at STAR

- Introduction to photonuclear processes
- Triggering photonuclear processes
- Purity of γ+Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Analysis Details
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

Initial State & Two-Particle Correlations

- Collective medium created (Quark-Gluon Plasma)
- Dominated by hydrodynamics

Collective Interaction Pressure

$$v_n = \kappa_n \epsilon_n$$

Momentum

Anisotropy

$$v_n \left(p_{\mathrm{T}}^{\mathrm{t}} \right) = \frac{c_n \left(p_{\mathrm{T}}^{\mathrm{t}}, p_{\mathrm{T}}^{\mathrm{a}} \right)}{\sqrt{c_n \left(p_{\mathrm{T}}^{\mathrm{a}}, p_{\mathrm{T}}^{\mathrm{a}} \right)}}$$

C_n: Two-particle flow coefficients

Event Categorization: N_{trk}^{TOF} distribution

 N_{trk}^{TOF} (Uncorrected TPC tracks matched with ToF detector) used for defining event class and for 2-particle correlations

- 1. $0 < N_{trk}^{TOF} \le 5$ (Low multiplicity)
- 2. $5 < N_{trk}^{TOF} \le 15$ (High multiplicity)

Year 2016, d+Au, $\sqrt{s_{NN}}$ = 39 GeV **STAR** Preliminary γ +Au \rightarrow X 15 Uncorrected N_{trk}^{TOF}

4.
$$N_{trk}^{TOF} = 8$$

5. $9 \le N_{trk}^{TOF} \le 10$

2.
$$N_{trk}^{TOF} = 6$$

1. $0 < N_{trk}^{TOF} \le 5$

$$3. N_{trk}^{TOF} = 7$$

Event Categorization: pt distribution

Year 2019, Au+Au, $\sqrt{s_{NN}}$ = 200 GeV: UPC 1nXn

Year 2016, d+Au,
$$\sqrt{s_{NN}}$$
 = 39 GeV

- 1. $0.2 \le p_T < 0.5$
- 2. $0.5 \le p_T < 1.0$
- 3. $1.0 \le p_T < 2.0$

1.
$$0.2 \le p_T < 0.5$$

2.
$$0.5 \le p_T < 1.0$$

3.
$$1.0 \le p_T < 2.0$$

Systematic Uncertainties

Cuts parameters:

1. Vary γ +Au \rightarrow X Selection cut: ZDC Neutron cut on γ -going side

 γ +AL

- 2. DCA
- 3. |TPC Vz VPD Vz|
- 4. TPC Vz
- 5. $\Delta \eta$
- 1. DCA
- 2. TPC Vz
- 3. $\Delta \eta$

Barlow Test

- Systematic Uncertainties from p_T-integrated C_n vs multiplicity
- Cuts parameters are varied one-by-one, Barlow test is performed for each cut, and the quadrature sum of each systematic run gives the total systematic uncertainty

- Introduction to photonuclear processes
- Triggering photonuclear processes
- Purity of γ+Au collisions
- Choice of d+Au as a reference for γ+Au collisions
- Flow in Heavy-Ion collisions
- Results: Correlation functions and flow coefficients: γAu vs dAu39 (reference)

C_n as a function of multiplicity

First-ever results of photonuclear collectivity search at RHIC

- C_n results comparable for $\gamma+Au$ and d+Au: Weak multiplicity dependence within uncertainties
- Low $N_{trk}^{TOF} \Longrightarrow$ Small number of tracks \Longrightarrow Dominance of non-flow processes

Comparing CF at similar multiplicity: γ Au vs dAu39 (reference)

- Large non-flow observed. Non-flow subtraction will be explored
- New Run 23 high-multiplicity Au+Au @ 200 GeV for better precision and improved control over non-flow subtraction

Summary

- Photo-nuclear cuts decided based on "standard candle": Trigger inclusive γ +A process using exclusive ρ -production
- Kinematic similarities between d+Au and γ +Au collisions: d+Au as reference
- ZDC neutron distribution of inclusive photo-nuclear process closely resembles that of pure photo-nuclear process → Small hadronic contamination
- First-ever results of photonuclear collectivity search at RHIC:
 - C_n results comparable for γ +Au and d+Au at similar multiplicity
 - Large effect of non-flow. Non-flow subtraction will be explored

We can't identify a university in the Santa Claus Village, as their research is top secret, but we do have a GRID record for the University of Lapland!

STAR Detector Upgrades & Dataset

Wider η coverage:

$$|\eta| < 1.0$$
 ---- $\frac{|\eta| < 1.5 \text{ (iTPC)}}{2.13 < |\eta| < 5.1 \text{ (EPD)}}$

γ +Au

- Run-19 Au-Au, $\sqrt{s_{NN}}$ = 200GeV
- Events: ~100M

d+Au: Baseline

- Run-16 dAu, $\sqrt{s_{NN}}$ = 39GeV
- Events: ~235M

Vertex Selection

- $-\sqrt{V_x^2 + V_y^2} < 2.0 \text{ cm}$
- $|V_z| < 100 \text{ cm}$
- |TPCVz VPDVz| < 5 cm (dAu39)
- $10 \text{ cm} < |\text{TPCVz} \text{VPDVz}| < 10^4 \text{ cm} (\gamma \text{Au})$

Track Selection

- DCA < 3.0 cm (dAu39), DCA < 3.5 cm (γAu)
- pT > 0.1 GeV/c
- $|\eta| < 1.5$
- nHitsFit > 10, nHitsFitRatio > 0.52

Systematic Uncertainties

	T	-	T	1		ı	T
Point index = 1	ZDCSum	DCA (cm)	Vzdiff (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	120 (East), 100 (West)	3.0	10	100	1.0		
ZDC3n_gamma	600 (East), 550 (West)					10.96	57.59
low_dca		1.0				0	0
high_vzdiff			15			0	0
low_vzdiff			5			0	2.8
low_tpcvz				50		0	0
deta_1_1					1.1	6.92	8.01
deta_1_2					1.2	0	9.72

	T	T	ı	1		ı	T
Point index = 2	ZDCSum	DCA (cm)	Vzdiff (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	120 (East), 100 (West)	3.0	10	100	1.0		
ZDC3n_gamma	600 (East), 550 (West)					46.99	95.26
low_dca		1.0				0	0
high_vzdiff			15			1.71	0
low_vzdiff			5			0	3.37
low_tpcvz				50		0	0
deta_1_1					1.1	7.47	0
deta_1_2					1.2	5.31	27.62

- Systematic Uncertainties from p_T-integrated C_n vs multiplicity (γAu)
- Cut parameters are varied one-by-one, Barlow test is performed for each cut, and the quadrature sum of each systematic run gives the total systematic uncertainty
- Expected uncertainties not evaluated yet: nHitsFit

Systematic Uncertainties

Point index = 1	DCA (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	3.0	100	1.0		
low_dca	1.0			0	0
low_tpcvz		50		0	0
deta_1_1			1.1	0	96.89
deta_1_2			1.2	22.36	332.39

_ 1						
	Point index = 2	DCA (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
	default	3.0	100	1.0		
	low_dca	1.0			0	0
	low_tpcvz		50		0	0
	deta_1_1			1.1	31.31	0
	deta_1_2			1.2	0	121.57
-						

Point index = 3	DCA (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	3.0	100	1.0		
low_dca	1.0			21.55	35.02
low_tpcvz		50		0	0
deta_1_1			1.1	0	52.65
deta_1_2			1.2	0	77.66

Point index = 4	DCA (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	3.0	100	1.0		
low_dca	1.0			17.9	0
low_tpcvz		50		0	0
deta_1_1			1.1	0	101.2
deta_1_2			1.2	0	153.62

Point index = 5	DCA (cm)	TPCVz(cm)	Deta	Sys C2 (%)	Sys C3 (%)
default	3.0	100	1.0		
low_dca	1.0			43.66	111.45
low_tpcvz		50		0	0
deta_1_1			1.1	42.38	0
deta_1_2			1.2	16.74	59.09

- Systematic Uncertainties from p_T-integrated C_n vs multiplicity (dAu39)
- Cut parameters are varied one-by-one, Barlow test is performed for each cut, and the quadrature sum of each systematic run gives the total systematic uncertainty
- Expected uncertainties not evaluated yet: nHitsFit

Pseudorapidity distributions

